CS 188: Artificial Intelligence

Probability

Instructors: Stuart Russell and Peyrin Kao

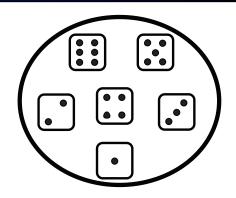
University of California, Berkeley

Uncertainty

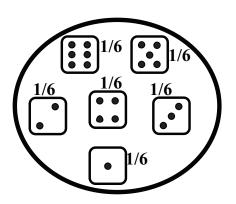
- The real world is rife with uncertainty!
 - E.g., if I leave for SFO 60 minutes before my flight, will I be there in time?
- Problems:
 - partial observability (road state, other drivers' plans, etc.)
 - noisy sensors (radio traffic reports, Google maps)
 - immense complexity of modelling and predicting traffic, security line, etc.
 - lack of knowledge of world dynamics (will tire burst? need COVID test?)
- Probabilistic assertions summarize effects of ignorance and laziness
- Combine probability theory + utility theory -> decision theory
 - Maximize expected utility : $a^* = argmax_a \sum_s P(s \mid a) U(s)$

Basic laws of probability (discrete)

- Begin with a set Ω of possible worlds
 - E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

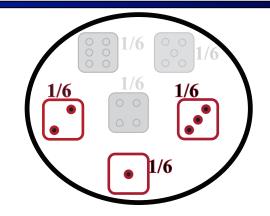


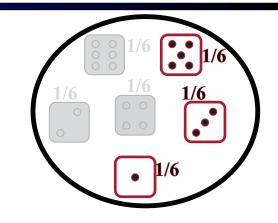
- A *probability model* assigns a number $P(\omega)$ to each world ω
 - E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6.
- These numbers must satisfy
 - $0 \le P(\omega) \le 1$



Basic laws contd.

- An *event* is any subset of Ω
 - E.g., "roll < 4" is the set {1,2,3}
 - E.g., "roll is odd" is the set {1,3,5}





- The probability of an event is the sum of probabilities over its worlds
 - $P(A) = \sum_{\omega \in A} P(\omega)$
 - E.g., P(roll < 4) = P(1) + P(2) + P(3) = 1/2

 De Finetti (1931): anyone who bets according to probabilities that violate these laws can be forced to lose money on every set of bets

Random Variables

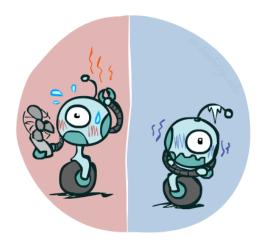
- A random variable (usually denoted by a capital letter) is some aspect of the world about which we may be uncertain
- Formally a *deterministic function* of ω
- The range of a random variable is the set of possible values
 - Odd = Is the dice roll an odd number? \rightarrow {true, false}
 - e.g. *Odd*(1)=true, *Odd*(6) = false
 - often write the event Odd=true as odd, Odd=false as ¬odd
 - $T = \text{Is it hot or cold?} \rightarrow \{\text{hot, cold}\}$
 - $D = \text{How long will it take to get to the airport?} \rightarrow [0, \infty)$
 - L_{Ghost} = Where is the ghost? \rightarrow {(0,0), (0,1), ...}
- The *probability distribution* of a random variable X gives the probability for each value x in its range (probability of the event X=x)
 - $P(X=x) = \sum_{\{\omega: X(\omega)=x\}} P(\omega)$
 - P(x) for short (when unambiguous)
 - P(X) refers to the entire distribution (think of it as a vector or table)

Probability Distributions

- Associate a probability with each value; sums to 1
 - Temperature:

P(T)

Т	Р
hot	0.5
cold	0.5



Weather:

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Joint distribution

P(T,W)

		Temperature	
		hot	cold
_	sun	0.45	0.15
ıthe	rain	0.02	0.08
Weather	fog	0.03	0.27
	meteor	0.00	0.00

Making possible worlds

- In many cases we
 - begin with random variables and their domains
 - construct possible worlds as assignments of values to all variables
- E.g., two dice rolls Roll₁ and Roll₂
 - How many possible worlds?
 - What are their probabilities?
- Size of distribution for n variables with range size d?
- For all but the smallest distributions, cannot write out by hand!

Probabilities of events

- Recall that the probability of an event is the sum of probabilities of its worlds:
 - $P(A) = \sum_{\omega \in A} P(\omega)$
- So, given a joint distribution over all variables, can compute any event probability!
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR not foggy?

Joint distribution

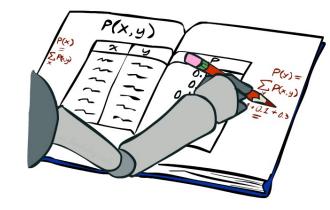
P(T,W)

		Temperature	
		hot	cold
r	sun	0.45	0.15
the	rain	0.02	0.08
Weather	fog	0.03	0.27
>	meteor	0.00	0.00

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Collapse a dimension by adding

$$P(X=x) = \sum_{y} P(X=x, Y=y)$$

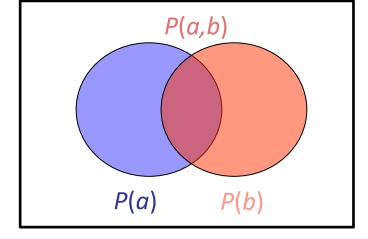


		Temperature			
		hot	cold		
	sun	0.45	0.15	0.60	
Weather	rain	0.02	0.08	0.10	D(M)
Nes	fog	0.03	0.27	0.30	P(W)
	meteor	0.00	0.00	0.00	
		0.50	0.50		•
P(T)					

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$



P(T,W)

		Temperature	
		hot	cold
L	sun	0.45	0.15
the	rain	0.02	0.08
Weather	fog	0.03	0.27
	meteor	0.00	0.00

$$P(W=s \mid T=c) = \frac{P(W=s, T=c)}{P(T=c)} = 0.15/0.50 = 0.3$$

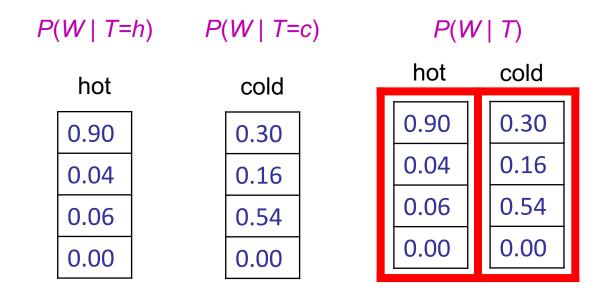
$$= P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c)$$

$$= 0.15 + 0.08 + 0.27 + 0.00 = 0.50$$

Conditional Distributions

Distributions for one set of variables given another set

		Temperature	
		hot	cold
	sun	0.45	0.15
the	rain	0.02	0.08
Weather	fog	0.03	0.27
\	meteor	0.00	0.00



Normalizing a distribution

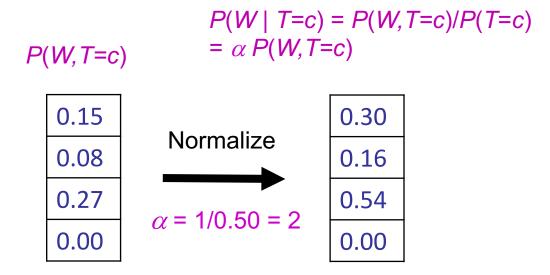
(Dictionary) To bring or restore to a normal condition

Procedure:

• Multiply each entry by $\alpha = 1/(\text{sum over all entries})$

P(W,T)

		Temperature	
		hot	cold
	sun	0.45	0.15
the	rain	0.02	0.08
Weather	fog	0.03	0.27
	meteor	0.00	0.00



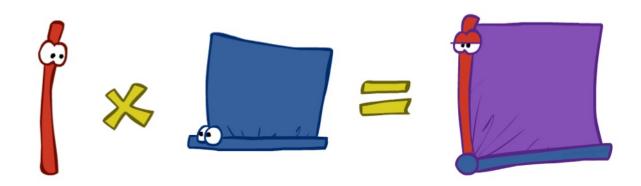
All entries sum to ONE

The Product Rule

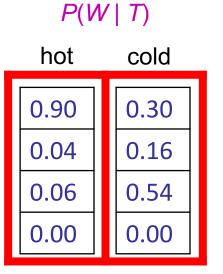
Sometimes have conditional distributions but want the joint

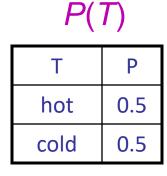
$$P(a \mid b) P(b) = P(a, b)$$

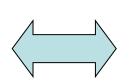
$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$



The Product Rule: Example







P(W, T)

		Temperature	
		hot	cold
J	sun	0.45	0.15
the	rain	0.02	0.08
Weather	fog	0.03	0.27
	meteor	0.00	0.00

The Chain Rule

- A joint distribution can be written as a product of conditional distributions by repeated application of the product rule:
- $P(x_1, x_2, x_3) = P(x_3 \mid x_1, x_2) P(x_1, x_2) = P(x_3 \mid x_1, x_2) P(x_2 \mid x_1) P(x_1)$
- $P(x_1, x_2, ..., x_n) = \prod_i P(x_i \mid x_1, ..., x_{i-1})$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from a probability model
 - Typically for a *query variable* given *evidence*
 - E.g., P(airport on time | no accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(airport on time | no accidents, 5 a.m.) = 0.95
 - P(airport on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes <u>beliefs to be updated</u>

Probability model $P(X_1, ..., X_n)$ is given

We want:

Partition the variables $X_1, ..., X_n$ into sets as follows:

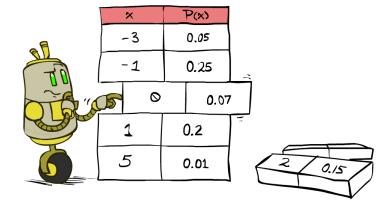
 $P(Q \mid e)$

Evidence variables: E = e

Query variables:

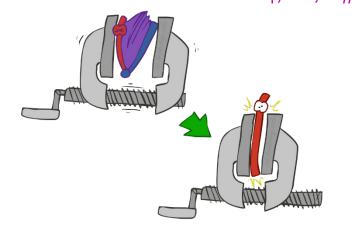
Hidden variables:

Step 1: Select the entries consistent with the evidence



Step 2: Sum out *H* from model to get joint of query and evidence

$$P(\mathbf{Q}, \mathbf{e}) = \sum_{h} P(\mathbf{Q}, h, \mathbf{e})$$



Step 3: Normalize

$$P(Q \mid e) = \alpha P(Q,e)$$

P(W)?

Season	Temp	Weather	Р
summer	hot	sun	0.35
summer	hot	rain	0.01
summer	hot	fog	0.01
summer	hot	meteor	0.00
summer	cold	sun	0.10
summer	cold	rain	0.05
summer	cold	fog	0.09
summer	cold	meteor	0.00
winter	hot	sun	0.10
winter	hot	rain	0.01
winter	hot	fog	0.02
winter	hot	meteor	0.00
winter	cold	sun	0.15
winter	cold	rain	0.20
winter	cold	fog	0.18
winter	cold	meteor	0.00

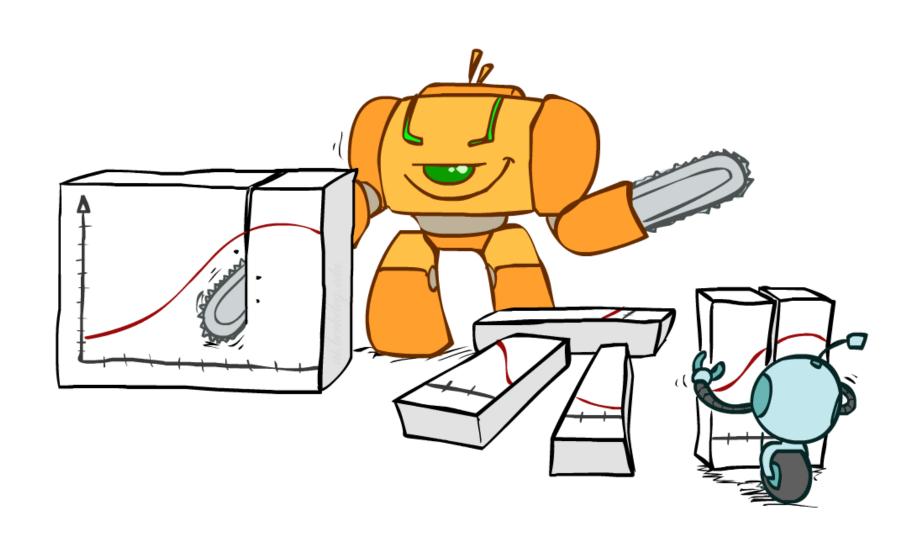
■ P(W)?

P(W | winter)?

Season	Temp	Weather	Р
summer	hot	sun	0.35
summer	hot	rain	0.01
summer	hot	fog	0.01
summer	hot	meteor	0.00
summer	cold	sun	0.10
summer	cold	rain	0.05
summer	cold	fog	0.09
summer	cold	meteor	0.00
winter	hot	sun	0.10
winter	hot	rain	0.01
winter	hot	fog	0.02
winter	hot	meteor	0.00
winter	cold	sun	0.15
winter	cold	rain	0.20
winter	cold	fog	0.18
winter	cold	meteor	0.00

- Obvious problems:
 - Worst-case time complexity $O(d^n)$ (exponential in #hidden variables)
 - Space complexity $O(d^n)$ to store the joint distribution
 - $O(d^n)$ data points to estimate the entries in the joint distribution

Bayes Rule



Bayes' Rule

Write the product rule both ways:

$$P(a | b) P(b) = P(a, b) = P(b | a) P(a)$$

Dividing left and right expressions, we get:

$$P(a \mid b) = \frac{P(b \mid a) P(a)}{P(b)}$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Describes an "update" step from prior P(a) to posterior $P(a \mid b)$
 - Hence provides a simple, formal theory of learning

That's my rule!

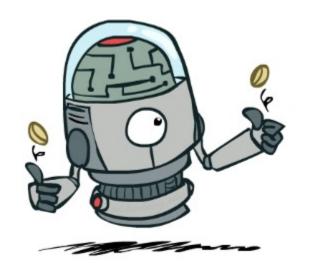
Independence

■ Two variables X and Y are (absolutely) *independent* if $\forall x,y$ P(x,y) = P(x) P(y)

- I.e., the joint distribution factors into a product of two simpler distributions
- Equivalently, via the product rule P(x,y) = P(x|y)P(y),

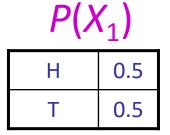
$$P(x \mid y) = P(x)$$
 or $P(y \mid x) = P(y)$

- Example: two dice rolls Roll₁ and Roll₂
 - $P(Roll_1=5, Roll_2=3) = P(Roll_1=5) P(Roll_2=3) = 1/6 \times 1/6 = 1/36$
 - $P(Roll_2=3 \mid Roll_1=5) = P(Roll_2=3)$

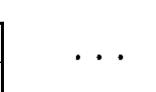


Example: Independence

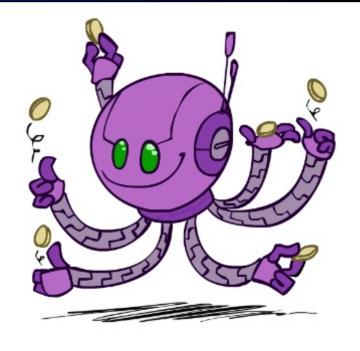
n fair, independent coin flips:

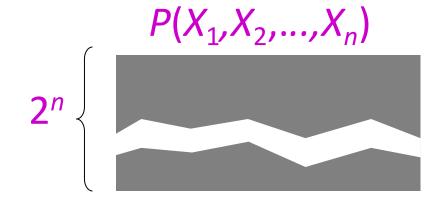


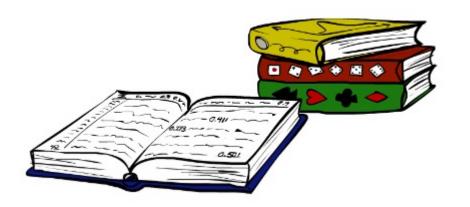
$P(X_2)$	
Н	0.5
Т	0.5



$P(X_n)$	
Н	0.5
Т	0.5

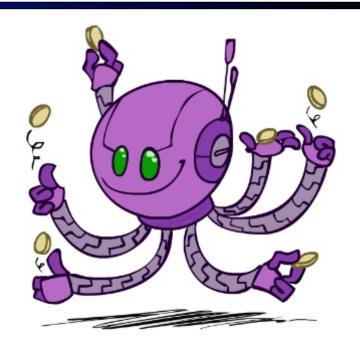


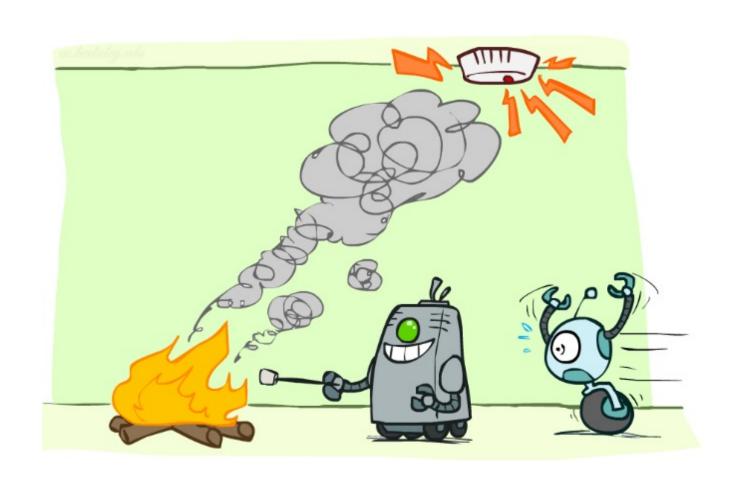




Independence, contd.

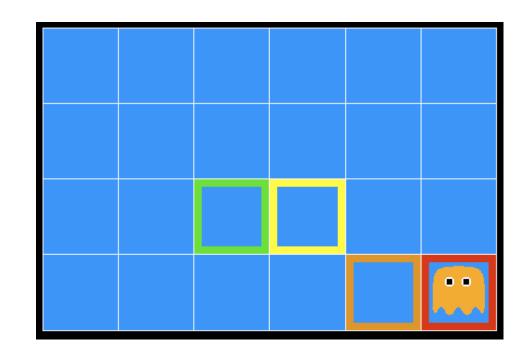
- Independence is incredibly powerful
 - Exponential reduction in representation size
- Independence is extremely rare!
- Conditional independence is ubiquitous!!





Ghostbusters

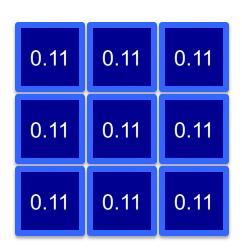
- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: usually red
 - 1 or 2 away: mostly orange
 - 3 or 4 away: typically yellow
 - 5+ away: often green
- Click on squares until confident of location, then "bust"



Video of Demo Ghostbusters with Probability

Ghostbusters model

- Variables and ranges:
 - *G* (ghost location) in {(1,1),...,(3,3)}
 - $C_{x,y}$ (color measured at square x,y) in {red,orange,yellow,green}

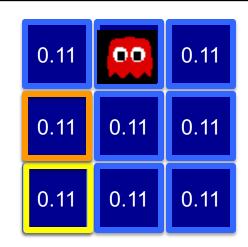


- Ghostbuster physics:
 - Uniform prior distribution over ghost location: P(G)
 - Sensor model: $P(C_{x,y} \mid G)$ (depends only on distance to G)
 - E.g. $P(C_{1.1} = \text{yellow} \mid G = (1,1)) = 0.1$

Ghostbusters model, contd.

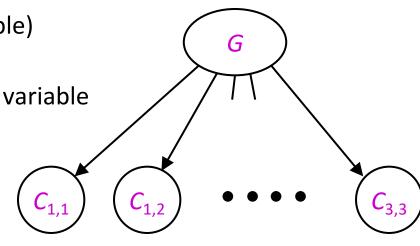
- $P(G, C_{1,1}, ... C_{3,3})$ has $9 \times 4^9 = 2,359,296$ entries!!!
- Ghostbuster independence:
 - Are $C_{1,1}$ and $C_{1,2}$ independent?
 - E.g., does $P(C_{1,1} = yellow) = P(C_{1,1} = yellow | C_{1,2} = orange)$?

- $P(C_{x,y} \mid G)$ depends <u>only</u> on distance to G
 - So $P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3)) = P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3), C_{1,2} = \text{orange})$
 - I.e., $C_{1,1}$ is conditionally independent of $C_{1,2}$ given G



Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
- $P(G, C_{1,1}, ... C_{3,3}) = P(G) P(C_{1,1} \mid G) P(C_{1,2} \mid G, C_{1,1}) P(C_{1,3} \mid G, C_{1,1}, C_{1,2}) ... P(C_{3,3} \mid G, C_{1,1}, ..., C_{3,2})$
- Now simplify using conditional independence:
- $P(G, C_{1,1}, ... C_{3,3}) = P(G) P(C_{1,1} \mid G) P(C_{1,2} \mid G) P(C_{1,3} \mid G) ... P(C_{3,3} \mid G)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from *exponential* to *quadratic* in the number of squares
- This is called a *Naïve Bayes* model:
 - One discrete query variable (often called the class or category variable)
 - All other variables are (potentially) evidence variables
 - Evidence variables are all conditionally independent given the query variable



- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if:

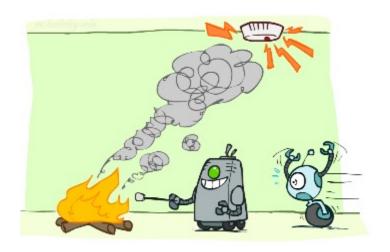
$$\forall x,y,z \qquad P(x \mid y,z) = P(x \mid z)$$

or, equivalently, if and only if

$$\forall x,y,z \qquad P(x,y\mid z) = P(x\mid z) P(y\mid z)$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm



Next time

- Bayes nets
- Elementary inference in Bayes nets