CS 188: Artificial Intelligence

Probability

Instructors: Stuart Russell and Peyrin Kao
University of California, Berkeley
Uncertainty

- The real world is rife with uncertainty!
 - E.g., if I leave for SFO 60 minutes before my flight, will I be there in time?
- Problems:
 - partial observability (road state, other drivers’ plans, etc.)
 - noisy sensors (radio traffic reports, Google maps)
 - immense complexity of modelling and predicting traffic, security line, etc.
 - lack of knowledge of world dynamics (will tire burst? need COVID test?)
- Probabilistic assertions summarize effects of *ignorance* and *laziness*
- Combine probability theory + utility theory -> decision theory
 - *Maximize expected utility*: \(a^* = \arg\max_a \sum_s P(s \mid a) U(s) \)
Basic laws of probability (discrete)

- Begin with a set Ω of possible worlds
 - E.g., 6 possible rolls of a die, \{1, 2, 3, 4, 5, 6\}

- A **probability model** assigns a number $P(\omega)$ to each world ω

- These numbers must satisfy
 - $0 \leq P(\omega) \leq 1$
 - $\sum_{\omega \in \Omega} P(\omega) = 1$
An event is any subset of Ω
- E.g., “roll < 4” is the set {1,2,3}
- E.g., “roll is odd” is the set {1,3,5}

The probability of an event is the sum of probabilities over its worlds
- $P(A) = \sum_{\omega \in A} P(\omega)$
- E.g., $P(\text{roll < 4}) = P(1) + P(2) + P(3) = 1/2$

De Finetti (1931): anyone who bets according to probabilities that violate these laws can be forced to lose money on every set of bets
A random variable (usually denoted by a capital letter) is some aspect of the world about which we may be uncertain.

Formally a **deterministic function** of \(\omega \)

The **range** of a random variable is the set of possible values

- **Odd** = Is the dice roll an odd number? \(\rightarrow \) \{true, false\}
 - e.g. \(\text{Odd}(1) = \text{true}, \text{Odd}(6) = \text{false} \)
 - often write the event \(\text{Odd}=\text{true} \) as \(\text{odd} \), \(\text{Odd}=\text{false} \) as \(\neg \text{odd} \)
- **T** = Is it hot or cold? \(\rightarrow \) \{hot, cold\}
- **D** = How long will it take to get to the airport? \(\rightarrow [0, \infty) \)
- **L_{Ghost}** = Where is the ghost? \(\rightarrow \{(0,0), (0,1), \ldots\} \)

The **probability distribution** of a random variable \(X \) gives the probability for each value \(x \) in its range (probability of the event \(X=x \))

\[
P(X=x) = \sum_{\omega: X(\omega)=x} P(\omega)
\]

\(P(x) \) for short (when unambiguous)

\(P(X) \) refers to the entire distribution (think of it as a vector or table)
Probability Distributions

- Associate a probability with each value; sums to 1

 - Temperature:

 \[P(T) \]

T	P
hot	0.5
cold	0.5

 - Weather:

 \[P(W) \]

W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

 - Joint distribution

 \[P(T,W) \]

Temperature	hot	cold
sun	0.45	0.15
rain	0.02	0.08
fog	0.03	0.27
meteor	0.00	0.00
Making possible worlds

- In many cases we
 - begin with random variables and their domains
 - construct possible worlds as assignments of values to all variables
- E.g., two dice rolls $Roll_1$ and $Roll_2$
 - How many possible worlds?
 - What are their probabilities?
- Size of distribution for n variables with range size d?
- For all but the smallest distributions, cannot write out by hand!
Probabilities of events

- Recall that the probability of an event is the sum of probabilities of its worlds:
 \[P(A) = \sum_{\omega \in A} P(\omega) \]
- So, given a joint distribution over all variables, can compute any event probability!
 - Probability that it’s hot AND sunny?
 - Probability that it’s hot?
 - Probability that it’s hot OR not foggy?

Joint distribution

\[P(T,W) \]

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hot</td>
<td>cold</td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>0.45</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.02</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>fog</td>
<td>0.03</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>meteor</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables.
- Marginalization (*summing out*): Collapse a dimension by adding

\[P(X=x) = \sum_y P(X=x, Y=y) \]

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>(P(T))</th>
<th>(P(W))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>hot</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>hot</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>fog</td>
<td>hot</td>
<td>0.03</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>meteor</td>
<td>hot</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T) = \begin{bmatrix} 0.50 \\ 0.50 \end{bmatrix} \]

\[P(W) = \begin{bmatrix} 0.60 & 0.10 & 0.30 & 0.00 \\ 0.50 & 0.50 & 0.00 & 0.00 \end{bmatrix} \]
A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

\[P(a | b) = \frac{P(a, b)}{P(b)} \]

\[
P(W=s | T=c) = \frac{P(W=s, T=c)}{P(T=c)} = 0.15/0.50 = 0.3
\]

\[
= P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c)
= 0.15 + 0.08 + 0.27 + 0.00 = 0.50
\]
Conditional Distributions

Distributions for one set of variables given another set

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hot</td>
</tr>
<tr>
<td>sun</td>
<td>0.45</td>
</tr>
<tr>
<td>rain</td>
<td>0.02</td>
</tr>
<tr>
<td>fog</td>
<td>0.03</td>
</tr>
<tr>
<td>meteor</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- **$P(W \mid T=h)$**
 - hot: 0.90
 - cold: 0.30

- **$P(W \mid T=c)$**
 - hot: 0.04
 - cold: 0.16

- **$P(W \mid T)$**
 - hot: 0.90
 - cold: 0.30

Conditional Distributions

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hot</td>
</tr>
<tr>
<td>sun</td>
<td>0.45</td>
</tr>
<tr>
<td>rain</td>
<td>0.02</td>
</tr>
<tr>
<td>fog</td>
<td>0.03</td>
</tr>
<tr>
<td>meteor</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- **$P(W \mid T=h)$**
 - hot: 0.90
 - cold: 0.30

- **$P(W \mid T=c)$**
 - hot: 0.04
 - cold: 0.16

- **$P(W \mid T)$**
 - hot: 0.90
 - cold: 0.30
Normalizing a distribution

- (Dictionary) To bring or restore to a normal condition

- Procedure:
 - Multiply each entry by $\alpha = 1/\text{sum over all entries}$

| Weather | Temperature | $P(W,T)$ | $P(W|T=c)$ |
|---------|-------------|----------|------------|
| sun | hot | 0.45 | 0.15 |
| | cold | 0.15 | 0.15 |
| rain | hot | 0.02 | 0.08 |
| | cold | 0.08 | 0.08 |
| fog | hot | 0.03 | 0.27 |
| | cold | 0.27 | 0.27 |
| meteor | hot | 0.00 | 0.00 |
| | cold | 0.00 | 0.00 |

$P(W,T) = P(W|T=c)P(T=c)$

$P(W|T=c) = P(W,T=c)/P(T=c)$

$\alpha = 1/0.50 = 2$

Normalize
Sometimes have conditional distributions but want the joint

\[P(a \mid b) \ P(b) = P(a, b) \]

\[\iff \]

\[P(a \mid b) = \frac{P(a, b)}{P(b)} \]
The Product Rule: Example

\[P(W \mid T) \cdot P(T) = P(W, T) \]

Temperature

<table>
<thead>
<tr>
<th>Weather</th>
<th>hot</th>
<th>cold</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.45</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>fog</td>
<td>0.03</td>
<td>0.27</td>
</tr>
<tr>
<td>meteor</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

P(T)

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

P(W|T)

<table>
<thead>
<tr>
<th>hot</th>
<th>cold</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>0.30</td>
</tr>
<tr>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>0.06</td>
<td>0.54</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
A joint distribution can be written as a product of conditional distributions by repeated application of the product rule:

\[P(x_1, x_2, x_3) = P(x_3 \mid x_1, x_2) \quad P(x_1, x_2) = P(x_3 \mid x_1, x_2) \quad P(x_2 \mid x_1) \quad P(x_1) \]

\[P(x_1, x_2, \ldots, x_n) = \prod_i P(x_i \mid x_1, \ldots, x_{i-1}) \]
Probabilistic inference: compute a desired probability from a probability model

- Typically for a query variable given evidence
- E.g., \(P(\text{airport on time} \mid \text{no accidents}) = 0.90 \)
- These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:

- \(P(\text{airport on time} \mid \text{no accidents, 5 a.m.}) = 0.95 \)
- \(P(\text{airport on time} \mid \text{no accidents, 5 a.m., raining}) = 0.80 \)
- Observing new evidence causes beliefs to be updated
Inference by Enumeration

- Probability model $P(X_1, \ldots, X_n)$ is given
- Partition the variables X_1, \ldots, X_n into sets as follows:
 - Evidence variables: $E = e$
 - Query variables: Q
 - Hidden variables: H

- We want: $P(Q \mid e)$

- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H from model to get joint of query and evidence

- Step 3: Normalize

$$P(Q, e) = \sum_h P(Q, h, e)$$

$$P(Q \mid e) = \alpha P(Q, e)$$
Inference by Enumeration

- $P(W)$?
Inference by Enumeration

- $P(W)$?

- $P(W \mid \text{winter})$?

<table>
<thead>
<tr>
<th>Season</th>
<th>Temp</th>
<th>Weather</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.35</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.01</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>fog</td>
<td>0.01</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>meteor</td>
<td>0.00</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>fog</td>
<td>0.09</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>meteor</td>
<td>0.00</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.01</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>fog</td>
<td>0.02</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>meteor</td>
<td>0.00</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>fog</td>
<td>0.18</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>meteor</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- **Obvious problems:**
 - Worst-case time complexity $O(d^n)$ (exponential in #hidden variables)
 - Space complexity $O(d^n)$ to store the joint distribution
 - $O(d^n)$ data points to estimate the entries in the joint distribution
Bayes Rule
Bayes’ Rule

- Write the product rule both ways:
 \[P(a \mid b) P(b) = P(a, b) = P(b \mid a) P(a) \]

- Dividing left and right expressions, we get:
 \[P(a \mid b) = \frac{P(b \mid a) P(a)}{P(b)} \]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Describes an “update” step from prior \(P(a) \) to posterior \(P(a \mid b) \)
 - Hence provides a simple, formal theory of learning
Independence

- Two variables X and Y are (absolutely) **independent** if
 \[\forall x, y \quad P(x, y) = P(x) P(y) \]

 - I.e., the joint distribution **factors** into a product of two simpler distributions

- Equivalently, via the product rule $P(x, y) = P(x | y) P(y)$,

 \[P(x \mid y) = P(x) \quad \text{or} \quad P(y \mid x) = P(y) \]

- Example: two dice rolls $Roll_1$ and $Roll_2$

 - $P(Roll_1=5, Roll_2=3) = P(Roll_1=5) P(Roll_2=3) = 1/6 \times 1/6 = 1/36$

 - $P(Roll_2=3 \mid Roll_1=5) = P(Roll_2=3)$
Example: Independence

- n fair, independent coin flips:

\[
\begin{array}{cc}
P(X_1) & P(X_2) & \ldots & P(X_n) \\
H & 0.5 & H & 0.5 & \ldots & H & 0.5 \\
T & 0.5 & T & 0.5 & \ldots & T & 0.5 \\
\end{array}
\]

\[P(X_1, X_2, \ldots, X_n) = 2^n\]
Independence, contd.

- Independence is incredibly powerful
 - Exponential reduction in representation size
- Independence is extremely rare!
- *Conditional* independence is ubiquitous!!
Conditional Independence
Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: usually red
 - 1 or 2 away: mostly orange
 - 3 or 4 away: typically yellow
 - 5+ away: often green
- Click on squares until confident of location, then “bust”
Video of Demo Ghostbusters with Probability
Ghostbusters model

- **Variables and ranges:**
 - G (ghost location) in $\{(1,1),\ldots,(3,3)\}$
 - $C_{x,y}$ (color measured at square x,y) in $\{\text{red, orange, yellow, green}\}$

- **Ghostbuster physics:**
 - *Uniform prior distribution* over ghost location: $P(G)$
 - *Sensor model*: $P(C_{x,y} \mid G)$ (depends only on distance to G)
 - E.g. $P(C_{1,1} = \text{yellow} \mid G = (1,1)) = 0.1$
Ghostbusters model, contd.

- \(P(G, C_{1,1}, \ldots, C_{3,3}) \) has \(9 \times 4^9 = 2,359,296 \) entries!!!

- **Ghostbuster independence:**
 - Are \(C_{1,1} \) and \(C_{1,2} \) independent?
 - E.g., does \(P(C_{1,1} = \text{yellow}) = P(C_{1,1} = \text{yellow} \mid C_{1,2} = \text{orange}) \)?

- **Ghostbuster physics again:**
 - \(P(C_{x,y} \mid G) \) **depends only on distance to** \(G \)
 - So \(P(C_{1,1} = \text{yellow} \mid G = (2,3)) = P(C_{1,1} = \text{yellow} \mid G = (2,3), C_{1,2} = \text{orange}) \)
 - I.e., \(C_{1,1} \) is **conditionally independent** of \(C_{1,2} \) **given** \(G \)
Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
 \[P(G, C_{1,1}, \ldots, C_{3,3}) = P(G) \prod_{i=1}^{3} P(C_{i,i} \mid G) \prod_{i=1}^{3} P(C_{i,(i+1)} \mid G, C_{1,1}, \ldots, C_{i-1,i}) \]

- Now simplify using conditional independence:
 \[P(G, C_{1,1}, \ldots, C_{3,3}) = P(G) \prod_{i=1}^{3} P(C_{i,i} \mid G) \prod_{i=1}^{3} P(C_{i,(i+1)} \mid G) \]

- I.e., conditional independence properties of ghostbuster physics simplify the probability model from exponential to quadratic in the number of squares

- This is called a Naive Bayes model:
 - One discrete query variable (often called the class or category variable)
 - All other variables are (potentially) evidence variables
 - Evidence variables are all conditionally independent given the query variable
Conditional Independence

- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z if and only if:
 \[P(x \mid y, z) = P(x \mid z) \]
 or, equivalently, if and only if
 \[P(x, y \mid z) = P(x \mid z) P(y \mid z) \]
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Next time

- Bayes nets
- Elementary inference in Bayes nets