
Reminder: elementary probability

§ Basic laws: 0 £ P(w) £ 1      åw ÎW P(w) = 1
§ Events: subsets of W: P(A) = åw Î A P(w)
§ Random variable X(w) has a value in each w

§ Distribution P(X) gives probability for each possible value x
§ Joint distribution P(X,Y) gives total probability for each combination x,y

§ Summing out/marginalization: P(X=x) = åy P(X=x,Y=y)
§ Conditional probability: P(X|Y) = P(X,Y)/P(Y)
§ Product rule: P(X|Y)P(Y)  =  P(X,Y)  =  P(Y|X)P(X)

§ Generalize to chain rule: P(X1,..,Xn)  =  Õi P(Xi | X1,..,Xi-1)
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Conditional Independence



Ghostbusters

§ A ghost is in the grid somewhere
§ Sensor readings tell how close a 

square is to the ghost
§ On the ghost: usually red
§ 1 or 2 away: mostly orange
§ 3 or 4 away: typically yellow
§ 5+ away: often green

§ Click on squares until confident 
of location, then “bust”



Video of Demo Ghostbusters with Probability



Ghostbusters model

§ Variables and ranges: 
§ G (ghost location) in {(1,1),…,(3,3)}
§ Cx,y (color measured at square x,y) in

{red,orange,yellow,green}

§ Ghostbuster physics:
§ Uniform prior distribution over ghost location: P(G)
§ Sensor model: P(Cx,y | G) (depends only on distance to G)

§ E.g. P(C1,1 = yellow | G = (1,1) ) = 0.1
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Ghostbusters model, contd.

§ P(G, C1,1 , … C3,3) has 9 x 49 = 2,359,296 entries!!!
§ Ghostbuster independence:

§ Are C1,1 and C1,2 independent? 
§ E.g., does P(C1,1 = yellow) = P(C1,1 = yellow | C1,2 = orange) ?

§ Ghostbuster physics again:
§ P(Cx,y | G) depends only on distance to G

§ So P(C1,1 = yellow | G = (2,3) ) = P(C1,1 = yellow | G = (2,3), C1,2 = orange)
§ I.e., C1,1 is conditionally independent of C1,2 given G
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Ghostbusters model, contd.

§ Apply the chain rule to decompose the joint probability model:
§ P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G, C1,1) P(C1,3 | G, C1,1, C1,2) … P(C3,3 | G, C1,1, …, C3,2)
§ Now simplify using conditional independence:
§ P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G) P(C1,3 | G) … P(C3,3 | G)
§ I.e., conditional independence properties of ghostbuster physics simplify the probability 

model from exponential to quadratic in the number of squares
§ This is called a Naïve Bayes model:

§ One discrete query variable (often called the class or category variable)
§ All other variables are (potentially) evidence variables
§ Evidence variables are all conditionally independent given the query variable

G

C1,1 C1,2 C3,3



Conditional Independence

§ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

§ X is conditionally independent of Y given Z if and only if: 
"x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if
"x,y,z P(x, y | z) = P(x | z) P(y | z)



Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining



Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Bayes Nets: Big Picture



Bayes Nets: Big Picture

§ Bayes nets: a technique for describing              
complex joint distributions (models) using         
simple, conditional distributions
§ A subset of the general class of graphical models

§ Use local causality/conditional independence: 
§ the world is composed of many variables, 
§ each interacting locally with a few others

§ Outline
§ Representation
§ Exact inference
§ Approximate inference



Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Indicate “direct influence” between variables
§ Formally: absence of arc encodes conditional 

independence (more later)

G
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Example: Coin Flips

§ n independent coin flips

§ No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

§ Variables:
§ T: There is traffic
§ U: I’m holding my umbrella
§ R: It rains

U

R

T



Example: Smoke alarm

§ Variables:
§ F: There is fire
§ S: There is smoke
§ A: Alarm sounds

F

S

A



Example Bayes’ Net: Car Insurance
SocioEconAge

GoodStudent ExtraCar

VehicleYear
YearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord



Example Bayes’ Net: Car Won’t Start



Bayes Net Syntax and Semantics



Bayes Net Syntax
§ A set of nodes, one per variable Xi

§ A directed, acyclic graph

§ A conditional distribution for each node 
given its parent variables in the graph
§ CPT (conditional probability table); each row is a 

distribution for child given values of its parents

Bayes net = Topology (graph) + Local Conditional Probabilities

G P(C1,1 | G)

g y o r

(1,1) 0.01 0.1 0.3 0.59

(1,2) 0.1 0.3 0.5 0.1

(1,3) 0.3 0.5 0.19 0.01

…

P(G)
(1,1) (1,2) (1,3) …

0.11 0.11 0.11 …
G

C1,1 C1,2 C3,3



Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

Number of free parameters 
in each CPT:

Parent range sizes d1,…,dk

Child range size d 
Each table row must sum to 1

(d-1) Πi di

1 1

4

2 2



General formula for sparse BNs

§ Suppose
§ n variables
§ Maximum range size is d
§ Maximum number of parents is k

§ Full joint distribution has size O(dn)
§ Bayes net has size O(n .dk)

§ Linear scaling with n as long as causal structure is local
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Bayes net global semantics

§ Bayes nets encode joint distributions as product of 
conditional distributions on each variable:

P(X1,..,Xn)  =  Õi P(Xi | Parents(Xi))



P(B)

true false

0.001 0.999

Example
P(b,¬e, a, ¬j, ¬m) =
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B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

P(b) P(¬e) P(a|b,¬e) P(¬j|a) P(¬m|a) 

=.001x.998x.94x.1x.3=.000028 

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Conditional independence in BNs

§ Compare the Bayes net global semantics
P(X1,..,Xn)  =  Õi P(Xi | Parents(Xi))

with the chain rule identity
P(X1,..,Xn)  =  Õi P(Xi | X1,…,Xi-1)

§ Assume (without loss of generality) that X1,..,Xn sorted in topological order according to 
the graph (i.e., parents before children), so Parents(Xi) Í X1,…,Xi-1

§ So the Bayes net asserts conditional independences P(Xi | X1,…,Xi-1) = P(Xi | Parents(Xi))
§ To ensure these are valid, choose parents for node Xi that “shield” it from other predecessors



Conditional independence semantics

§ Every variable is conditionally independent of its non-descendants given its parents
§ Conditional independence semantics <=> global semantics
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Example: Burglary

§ Burglary
§ Earthquake
§ Alarm

27

Burglary Earthquake

Alarm

?

??

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

P(E)

true false

0.002 0.998



Example: Burglary

§ Alarm
§ Burglary
§ Earthquake
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Burglary Earthquake

Alarm

?

?

?

P(A)

true false

A B P(E|A,B)

true false

true true

true false

false true

false false

A P(B|A)

true false

true

false

? ?



Inference by Enumeration in Bayes Net

§ Reminder of inference by enumeration:
§ Any probability of interest can be computed by summing 

entries from the joint distribution: P(Q | e) = a åh P(Q , h, e)
§ Entries from the joint distribution can be obtained from a BN 

by multiplying the corresponding conditional probabilities

§ P(B | j, m) =  α åe,a P(B, e, a, j, m) 
§ =  α åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
§ So inference in Bayes nets means computing sums of 

products of numbers: sounds easy!!
§ Problem: sums of exponentially many products!

B E

A

MJ



Can we do better?

§ Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
§ 16 multiplies, 7 adds
§ Lots of repeated subexpressions!

§ Rewrite as (u+v)(w+x)(y+z)
§ 2 multiplies, 3 adds

§ åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
§ = P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(¬e)P(a|B,¬e)P(j|a)P(m|a)

+ P(B)P(e)P(¬a|B,e)P(j|¬a)P(m|¬a) + P(B)P(¬e)P(¬a|B,¬e)P(j|¬a)P(m|¬a)
Lots of repeated subexpressions!
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Summary

§ Independence and conditional independence are 
important forms of probabilistic knowledge

§ Bayes net encode joint distributions efficiently by 
taking advantage of conditional independence
§ Global joint probability = product of local conditionals

§ Exact inference = sums of products of conditional 
probabilities from the network


