Reminder: elementary probability

- Basic laws: $0 \le P(\omega) \le 1$ $\sum_{\omega \in \Omega} P(\omega) = 1$
- Events: subsets of Ω : $P(A) = \sum_{\omega \in A} P(\omega)$
- Random variable X(\omega) has a value in each \omega
 - Distribution P(X) gives probability for each possible value x
 - Joint distribution P(X, Y) gives total probability for each combination x, y
- Summing out/marginalization: $P(X=x) = \sum_{y} P(X=x, Y=y)$
- Conditional probability: P(X | Y) = P(X,Y)/P(Y)
- Product rule: P(X|Y)P(Y) = P(X,Y) = P(Y|X)P(X)
 - Generalize to chain rule: $P(X_1,..,X_n) = \prod_i P(X_i \mid X_1,..,X_{i-1})$

Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: usually red
 - 1 or 2 away: mostly orange
 - 3 or 4 away: typically yellow
 - 5+ away: often green
- Click on squares until confident of location, then "bust"

Video of Demo Ghostbusters with Probability

Ghostbusters model

- Variables and ranges:
 - G (ghost location) in {(1,1),...,(3,3)}
 - C_{x,y} (color measured at square x,y) in {red,orange,yellow,green}

- Ghostbuster physics:
 - Uniform prior distribution over ghost location: P(G)
 - Sensor model: P(C_{x,v} | G) (depends only on distance to G)
 - E.g. P(C_{1,1} = yellow | G = (1,1)) = 0.1

Ghostbusters model, contd.

- $P(G, C_{1,1}, \dots, C_{3,3})$ has 9 x 4⁹ = 2,359,296 entries!!!
- Ghostbuster independence:
 - Are C_{1,1} and C_{1,2} independent?

• E.g., does $P(C_{1,1} = yellow) = P(C_{1,1} = yellow | C_{1,2} = orange)$?

- Ghostbuster physics again:
 - P(C_{x,y} | G) depends <u>only</u> on distance to G
 - So $P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3)) = P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3), C_{1,2} = \text{orange})$
 - I.e., C_{1,1} is conditionally independent of C_{1,2} given G

Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
- $P(G, C_{1,1}, ..., C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G, C_{1,1}) P(C_{1,3} | G, C_{1,1}, C_{1,2}) ... P(C_{3,3} | G, C_{1,1}, ..., C_{3,2})$
- Now simplify using conditional independence:
- $P(G, C_{1,1}, ..., C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G) P(C_{1,3} | G) ... P(C_{3,3} | G)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from *exponential* to *quadratic* in the number of squares
- This is called a *Naïve Bayes* model:
 - One discrete query variable (often called the *class* or *category* variable)
 - All other variables are (potentially) evidence variables
 - Evidence variables are all conditionally independent given the query variable

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if: $\forall x,y,z \quad P(x \mid y, z) = P(x \mid z)$

or, equivalently, if and only if $\forall x,y,z \quad P(x, y \mid z) = P(x \mid z) P(y \mid z)$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Bayes Nets: Big Picture

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions
 - A subset of the general class of graphical models
- Use local causality/conditional independence:
 - the world is composed of many variables,
 - each interacting locally with a few others
- Outline
 - Representation
 - Exact inference
 - Approximate inference

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: absence of arc encodes conditional independence (more later)

Example: Coin Flips

No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - T: There is traffic
 - U: I'm holding my umbrella
 - R: It rains

Example: Smoke alarm

- Variables:
 - F: There is fire
 - S: There is smoke
 - A: Alarm sounds

Example Bayes' Net: Car Insurance

Example Bayes' Net: Car Won't Start

Bayes Net Syntax and Semantics

Bayes Net Syntax

- A set of nodes, one per variable X_i
- A directed, acyclic graph
- A conditional distribution for each node given its *parent variables* in the graph
 - CPT (conditional probability table); each row is a distribution for child given values of its parents

G	P(C _{1,1} G)			
	g	У	0	r
(1,1)	0.01	0.1	0.3	0.59
(1,2)	0.1	0.3	0.5	0.1
(1,3)	0.3	0.5	0.19	0.01

Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

General formula for sparse BNs

- Suppose
 - n variables
 - Maximum range size is d
 - Maximum number of parents is k
- Full joint distribution has size O(dⁿ)
- Bayes net has size O(n · d^k)
 - Linear scaling with n as long as causal structure is local

Bayes net global semantics

Bayes nets encode joint distributions as product of conditional distributions on each variable: $P(X_1, ..., X_n) = \prod_i P(X_i \mid Parents(X_i))$

Example

P(b) P(\neg e) P(a|b, \neg e) P(\neg j|a) P(\neg m|a) =.001x.998x.94x.1x.3=.000028

P(b,¬e, a, ¬j, ¬m) =

false

0.05

0.06

0.71

0.999

24

Conditional independence in BNs

Compare the Bayes net global semantics

 $P(X_1,..,X_n) = \prod_i P(X_i \mid Parents(X_i))$

with the chain rule identity

 $P(X_1,..,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$

- Assume (without loss of generality) that X₁,..,X_n sorted in topological order according to the graph (i.e., parents before children), so Parents(X_i) ⊆ X₁,...,X_{i-1}
- So the Bayes net asserts conditional independences $P(X_i | X_1, ..., X_{i-1}) = P(X_i | Parents(X_i))$
 - To ensure these are valid, choose parents for node X_i that "shield" it from other predecessors

Conditional independence semantics

- **Every variable is conditionally independent of its non-descendants given its parents**
- Conditional independence semantics <=> global semantics

Example: Burglary

Example: Burglary

Inference by Enumeration in Bayes Net

Reminder of inference by enumeration:

- Any probability of interest can be computed by summing entries from the joint distribution: $P(Q | e) = \alpha \sum_{h} P(Q, h, e)$
- Entries from the joint distribution can be obtained from a BN by multiplying the corresponding conditional probabilities
- $P(B \mid j, m) = \alpha \sum_{e,a} P(B, e, a, j, m)$
 - = $\alpha \sum_{e,a} P(B) P(e) P(a|B,e) P(j|a) P(m|a)$
- So inference in Bayes nets means computing sums of products of numbers: sounds easy!!
- Problem: sums of *exponentially many* products!

Can we do better?

Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz

- 16 multiplies, 7 adds
- Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds
- $\sum_{e,a} P(B) P(e) P(a | B,e) P(j | a) P(m | a)$
- $= P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(\neg e)P(a|B,\neg e)P(j|a)P(m|a)$
 - + $P(B)P(e)P(\neg a | B,e)P(j | \neg a)P(m | \neg a) + P(B)P(\neg e)P(\neg a | B, \neg e)P(j | \neg a)P(m | \neg a)$ Lots of repeated subexpressions!

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
 - Global joint probability = product of local conditionals
- Exact inference = sums of products of conditional probabilities from the network

