Reminder: elementary probability

- Basic laws: $0 \leq P(\omega) \leq 1 \quad \sum_{\omega \in \Omega} P(\omega)=1$
- Events: subsets of $\Omega: P(A)=\sum_{\omega \in A} P(\omega)$
- Random variable $X(\omega)$ has a value in each ω
- Distribution $P(X)$ gives probability for each possible value x
- Joint distribution $P(X, Y)$ gives total probability for each combination x, y
- Summing out/marginalization: $P(X=x)=\sum_{y} P(X=x, Y=y)$
- Conditional probability: $P(X \mid Y)=P(X, Y) / P(Y)$
- Product rule: $P(X \mid Y) P(Y)=P(X, Y)=P(Y \mid X) P(X)$
- Generalize to chain rule: $P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, . ., X_{i-1}\right)$

Conditional Independence

Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: usually red
- 1 or 2 away: mostly orange
- 3 or 4 away: typically yellow
- 5+ away: often green
- Click on squares until confident of location, then "bust"

Ghostbusters model

- Variables and ranges:
- G (ghost location) in $\{(1,1), \ldots,(3,3)\}$
- $C_{x, y}$ (color measured at square x, y) in \{red,orange,yellow,green\}

- Ghostbuster physics:
- Uniform prior distribution over ghost location: $P(G)$
- Sensor model: $P\left(C_{x, y} \mid G\right)$ (depends only on distance to G)
- E.g. $P\left(C_{1,1}=\right.$ yellow $\left.\mid G=(1,1)\right)=0.1$

Ghostbusters model, contd.

- $\mathrm{P}\left(\mathrm{G}, C_{1,1}, \ldots C_{3,3}\right)$ has $9 \times 4^{9}=2,359,296$ entries!!!
- Ghostbuster independence:
- Are $C_{1,1}$ and $C_{1,2}$ independent?
- E.g., does $\mathrm{P}\left(C_{1,1}=\right.$ yellow $)=\mathrm{P}\left(C_{1,1}=\right.$ yellow $\mid C_{1,2}=$ orange $)$?

- Ghostbuster physics again:
- $P\left(C_{x, y} \mid G\right)$ depends only on distance to G
- So $P\left(C_{1,1}=\right.$ yellow $\left.\mid \underline{G=(2,3)}\right)=P\left(C_{1,1}=\right.$ yellow $\mid \underline{G=(2,3)}, C_{1,2}=$ orange)
- I.e., $C_{1,1}$ is conditionally independent of $C_{1,2}$ given G

Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
- $P\left(G, C_{1,1}, \ldots C_{3,3}\right)=P(G) P\left(C_{1,1} \mid G\right) P\left(C_{1,2} \mid G, C_{1,1}\right) P\left(C_{1,3} \mid G, C_{1,1}, C_{1,2}\right) \ldots P\left(C_{3,3} \mid G, C_{1,1}, \ldots, C_{3,2}\right)$
- Now simplify using conditional independence:
- $P\left(G, C_{1,1}, \ldots C_{3,3}\right)=P(G) P\left(C_{1,1} \mid G\right) P\left(C_{1,2} \mid G\right) P\left(C_{1,3} \mid G\right) \ldots P\left(C_{3,3} \mid G\right)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from exponential to quadratic in the number of squares
- This is called a Naïve Bayes model:
- One discrete query variable (often called the class or category variable)
- All other variables are (potentially) evidence variables
- Evidence variables are all conditionally independent given the query variable

Conditional Independence

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if:

$$
\forall x, y, z \quad P(x \mid y, z)=P(x \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z \quad P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Bayes Nets: Big Picture

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions
- A subset of the general class of graphical models
- Use local causality/conditional independence:

- the world is composed of many variables,
- each interacting locally with a few others
- Outline
- Representation
- Exact inference
- Approximate inference

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Indicate "direct influence" between variables
- Formally: absence of arc encodes conditional independence (more later)

Example: Coin Flips

- n independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- T: There is traffic
- U: I'm holding my umbrella
- R: It rains

Example: Smoke alarm

- Variables:
- F: There is fire
- S : There is smoke
- A: Alarm sounds

Example Bayes' Net: Car Insurance

Example Bayes' Net: Car Won’t Start

Bayes Net Syntax and Semantics

Bayes Net Syntax

- A set of nodes, one per variable X_{i}
- A directed, acyclic graph
- A conditional distribution for each node given its parent variables in the graph

Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

General formula for sparse BNs

- Suppose
- n variables
- Maximum range size is d
- Maximum number of parents is k
- Full joint distribution has size $O\left(d^{n}\right)$
- Bayes net has size $O\left(n \cdot d^{k}\right)$
- Linear scaling with n as long as causal structure is local

Bayes net global semantics

- Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

Example

Conditional independence in BNs

- Compare the Bayes net global semantics

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

with the chain rule identity

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- Assume (without loss of generality) that $X_{1}, . ., X_{n}$ sorted in topological order according to the graph (i.e., parents before children), so Parents $\left(X_{i}\right) \subseteq X_{1}, \ldots, X_{i-1}$
- So the Bayes net asserts conditional independences $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- To ensure these are valid, choose parents for node X_{i} that "shield" it from other predecessors

Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics

Example: Burglary

Example: Burglary

- Alarm
- Burglary
- Earthquake

A	$P(B \mid A)$	
	true	false
true	$?$	
false		

Inference by Enumeration in Bayes Net

- Reminder of inference by enumeration:
- Any probability of interest can be computed by summing entries from the joint distribution: $\mathrm{P}(\boldsymbol{Q} \mid \boldsymbol{e})=\alpha \sum_{h} \mathrm{P}(\boldsymbol{Q}, \boldsymbol{h}, \boldsymbol{e})$
- Entries from the joint distribution can be obtained from a BN by multiplying the corresponding conditional probabilities
- $P(B \mid j, m)=\alpha \sum_{e, a} P(B, e, a, j, m)$
- $\quad=\alpha \sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$
- So inference in Bayes nets means computing sums of
 products of numbers: sounds easy!!
- Problem: sums of exponentially many products!

Can we do better?

- Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
- 16 multiplies, 7 adds
- Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
- 2 multiplies, 3 adds
- $\sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$
- = $P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)+P(B) P(\neg e) P(a \mid B, \neg e) P(j \mid a) P(m \mid a)$
$+P(B) P(e) P(\neg a \mid B, e) P(j \mid \neg a) P(m \mid \neg a)+P(B) P(\neg e) P(\neg a \mid B, \neg e) P(j \mid \neg a) P(m \mid \neg a)$
Lots of repeated subexpressions!

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
- Global joint probability = product of local conditionals
- Exact inference = sums of products of conditional probabilities from the network

