Reminder: elementary probability

Basiclaws: 0<P(w) <1 2, _pPlw)=1
Events: subsets of (2 P(A) =2, _ » P(®)

Random variable X(w) has a value in each w

= Distribution P(X) gives probability for each possible value x

= Joint distribution P(X,Y) gives total probability for each combination x,y
Summing out/marginalization: P(X=x) = 2., P(X=x,Y=y)
Conditional probability: P(X]|Y) = P(X,Y)/P(Y)

Product rule: P(X|Y)P(Y) = P(X,Y) = P(Y|X)P(X)

» Generalize to chain rule: P(Xy,.., X)) = 11, P(X; | X,..,X:4)
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Conditional Independence




Ghostbusters

= Aghostisinthe grid somewhere

= Sensor readings tell how close a
square is to the ghost
= On the ghost: usually red
= 1 or 2 away: mostly orange
= 3 or 4 away: typically yellow
= 5+ away: often green

= Click on squares until confident
of location, then “bust”



Video of Demo Ghostbusters with Probability




Ghostbusters model

= Variables and ranges:
= G (ghost location) in {(1,1),...,(3,3)}
" C, , (color measured at square x,y) in

{red,orange,yellow,green}

= Ghostbuster physics:
» Uniform prior distribution over ghost location: P(G)

= Sensor model: P(C, , | G) (depends only on distance to G)
" E.g. P(C;,=vyellow | G=(1,1))=0.1



Ghostbusters model, contd.

= Are C, , and C, , independent? ‘...
. : 0.11 § 0.11 7§ 0.11
= P(C,, | G) depends only on distance to G

" P(G, C; 4, ... C33) has 9 x 4”7 = 2,359,296 entries!!! H
" E.g., does P(C, ;, = yellow) = P(C, , = yellow | C; ,= orange) ?
" So P(C,,=vellow | G=(2,3))=P(C, , =yellow | G=(2,3), C, ,= orange)

= Ghostbuster independence:
» Ghostbuster physics again:
" |.e., C,  is conditionally independent of C, , given G




Ghostbusters model, contd.

Apply the chain rule to decompose the joint probability model:

P(Gr Cl,lr C3,3) = P(G) P(Cl,l | G) P(C1,z | G; Cl,l) P(C1,3 | G; C1,1/ C1,2) P(C3,3 | G/ Cl,lr o0 C3,2)
Now simplify using conditional independence:

P(G, Cy1, - C33) = P(G) P(Cyy | G) P(Cyy | G)P(Cys | G) ... P(Css | G)

l.e., conditional independence properties of ghostbuster physics simplify the probability
model from exponential to quadratic in the number of squares

This is called a Naive Bayes model:
= One discrete query variable (often called the class or category variable)
= All other variables are (potentially) evidence variables
= Evidence variables are all conditionally independent given the query variable




Conditional Independence

= Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= X is conditionally independent of Y given Z if and only if:
vx,y,z  Plx|y z)=Plx|2)

or, equivalently, if and only if
Vxy,z Pl y|z)=Plx|2z)Ply| 2



Conditional Independence

= \What about this domain:

= Traffic
= Umbrella

= Raining




Conditional Independence

= \What about this domain:

" Fire
= Smoke
= Alarm




Bayes Nets: Big Picture




Bayes Nets: Big Picture

= Bayes nets: a technique for describing
complex joint distributions (models) using
simple, conditional distributions

= A subset of the general class of graphical models
= Use local causality/conditional independence:

= the world is composed of many variables,
= each interacting locally with a few others

= Qutline
= Representation

= Exact inference
= Approximate inference




Graphical Model Notation

= Nodes: variables (with domains)

= Can be assigned (observed) or unassigned
(unobserved)

" Arcs: interactions
®» |ndicate “direct influence” between variables

= Formally: absence of arc encodes conditional
independence (more later)




Example: Coin Flips

" nindependent coin flips

" No interactions between variables: absolute independence



Example: Traffic

= Variables:
= T:There is traffic
= U: I'm holding my umbrella
= R:ltrains




Example: Smoke alarm

= Variables: (.‘.-p% lx\N
D! ) :
= F:Thereis fire F (’@
= S:There is smoke ARr

= A: Alarm sounds




Example Bayes’ Net: Car Insurance

Age >(_SocioEcon
GoodStudent

RiskAversion

XS .
DrivingSKkill w
DrivingRecord

DrivingBehavior /

MedicalCost LiabilityCost PropertyCost

OwnCarDamage



Example Bayes’ Net: Car Won’t Start

alternator fanbelt
broken broke

fuel line starter
blocked hroke



Bayes Net Syntax and Semantics




Bayes Net Syntax

= Aset of nodes, one per variable X;

= Adirected, acyclic graph

= A conditional distribution for each node
given its parent variables in the graph

= CPT (conditional probability table); each row is a G P(C141G)
distribution for child given values of its parents - - T To T
(1,1) 001 |01 |03 |059
1,2) 0.1 03 |05 |01
(1,3) 0.3 0.5 | 0.19 | 0.01

Bayes net = Topology (graph) + Local Conditional Probabilities



P(B)
true false
0.001 | 0.999
A P(J|A)
true false
true 0.9 0.1
false 0.05 0.95

Example: Alarm Network

1
Burglary

1

P(E)
true | false
0.002 | 0.998
B E P(A|B,E)

true | false

true | true | 0.95 0.05
true | false | 0.94 | 0.06
false | true | 0.29 | 0.71
false | false | 0.001 | 0.999
A P(M]|A)

true false
true 0.7 0.3
false 0.01 0.99
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Number of free parameters
in each CPT:

Parent range sizes d,...,d,

Child range size d
Each table row must sum to 1

(d-1) I; d;



General formula for sparse BNs

= Suppose
" n variables
" Maximum range size is d
= Maximum number of parents is k

" Full joint distribution has size O(d")
= Bayes net has size O(n -d¥)

® Linear scaling with n as long as causal structure is local
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Bayes net global semantics

= Bayes nets encode joint distributions as product of
conditional distributions on each variable:

P(Xy,.,X,) = 11; P(X; | Parents(X))



Example

P(B) P(E) P(b;_'e; d, _'j) _'m) =
true | false true | false :
I Burglary Earthquake e | P(b) P(—e) P(a|b,—e)P(—j|a) P(—m]a)
8 | E P(A|B.E) =.001x.998x.94x.1x.3=.0000238
true false
true | true 0.95 0.05
truet false | 0.94 | 0.06
false | true | 0.29 0.71
false | false | 0.001 | 0.999
A P(J|A) A P(M|A)

true | false true | false

true 0.9 0.1 true 0.7 0.3

false 0.05 0.95 false 0.01 0.99 24




Conditional independence in BNs

Compare the Bayes net global semantics

P(Xy,...X,) = 11; P(X; | Parents(X;))

with the chain rule identity
P(Xl,..,Xn) = H,- P(X: | Xy,..,Xi 1)

Assume (without loss of generality) that X,,.., X, sorted in topological order according to
the graph (i.e., parents before children), so Parents(X;) < X4,...,Xi1

So the Bayes net asserts conditional independences P(X; | X,,...,X.1) = P(X; | Parents(X))
= To ensure these are valid, choose parents for node X; that “shield” it from other predecessors



Conditional independence semantics

= Every variable is conditionally independent of its non-descendants given its parents

" Conditional independence semantics <=> global semantics
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Example: Burglary

P(B) -,
P(E) L —
- true | false — T Vf:;"@
B u rg I a ry 0.001 | 0.999 :002 ; 9|98 LN
= Earthquake Burglary

= Alarm

P(A|B,E)

false

true | true 0.95 0.05

true | false | 0.94 0.06

false | true | 0.29 0.71

false | false | 0.001 | 0.999
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Example: Burglary

P(A)

m AI arm true | false

" Burglary 5

= Earthquake

A B P(E|A,B)

A P(B|A) true false
Burglary Earthquake
true false
2 true | true | D

true - -
? true | false
false false | true
false | false
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Inference by Enumeration in Bayes Net

Reminder of inference by enumeration: e e
= Any probability of interest can be computed by summing
entries from the joint distribution: P(Q | e) = 2., P(Q, h, e)

= Entries from the joint distribution can be obtained from a BN
by multiplying the corresponding conditional probabilities

P(B|j,m)=a2.,P(B, e a,jm)

= a2, P(B) Ple) P(alB,e) P(j|a) P(m]a) 0 @
So inference in Bayes nets means computing sums of
products of numbers: sounds easy!!
Problem: sums of exponentially many products!

N & N



Can we do better?

Consider uwy + Uwz + uxy + uxz + vwy + VWz + VXy +VXz
= 16 multiplies, 7 adds
" Lots of repeated subexpressions!
Rewrite as (u+v)(w+x)(y+z)
= 2 multiplies, 3 adds
3. P(B) Ple) P(a|B,e) P(j| a) P(m | a)
= P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(—e)P(a|B,—e)P(j|a)P(m|a)
+ P(B)P(e)P(—a|B,e)P(j|—a)P(m|—a) + P(B)P(—e)P(—a|B,—e)P(j| —a)P(m|—a)

Lots of repeated subexpressions!
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Summary

= |ndependence and conditional independence are
important forms of probabilistic knowledge

= Bayes net encode joint distributions efficiently by
taking advantage of conditional independence

= Global joint probability = product of local conditionals

= Exact inference = sums of products of conditional
probabilities from the network




