Markov Chain Monte Carlo

- MCMC (Markov chain Monte Carlo) is a family of randomized algorithms for approximating some quantity of interest over a very large state space
- Markov chain = a sequence of randomly chosen states ("random walk"), where each state is chosen conditioned on the previous state
- Monte Carlo = an algorithm (usually based on sampling) that has some probability of producing an incorrect answer
- MCMC = wander around for a bit, average what you see

Gibbs sampling

- A particular kind of MCMC

- States are complete assignments to all variables
- (Cf local search: closely related to simulated annealing!)
- Evidence variables remain fixed, other variables change
- To generate the next state, pick a variable and sample a value for it conditioned on all the other variables: $X_{i}^{\prime} \sim P\left(X_{i} \mid x_{1}, \ldots, X_{i-1}, x_{i+1} \ldots, x_{n}\right)$
- Will tend to move towards states of higher probability, but can go down too
- In a Bayes net, $P\left(X_{i} \mid x_{1}, ., x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=P\left(X_{i} \mid\right.$ markov_blanket $\left.\left(X_{i}\right)\right)$
- Theorem: Gibbs sampling is consistent*

Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair

Advantages of MCMC

Samples soon begin to reflect all the evidence in the network

Eventually they are being drawn from the true posterior!

Car Insurance: $P($ PropertyCost | e)

Car Insurance: $P($ PropertyCost | e)

Gibbs sampling algorithm

- Repeat many times
- Sample a non-evidence variable X_{i} from

$$
\begin{aligned}
& P\left(X_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=P\left(X_{i} \mid \text { markov_blanket }\left(X_{i}\right)\right) \\
& \quad=\alpha P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right) \prod_{j} P\left(y_{j} \mid \text { parents }\left(Y_{j}\right)\right)
\end{aligned}
$$

Gibbs Sampling Example: $P(S \mid r)$

- Step 1: Fix evidence
- $R=$ true

- Step 2: Initialize other variables
- Randomly

- Step 3: Repeat
- Choose a non-evidence variable X
- Resample X from $P(X \mid$ markov_blanket $(X))$

Markov chain given s, w

Gibbs sampling and MCMC in practice

- The most commonly used method for large Bayes nets
- See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.
- Can be compiled to run very fast
- Eliminate all data structure references, just multiply and sample
- ~100 million samples per second on a laptop
- Can run asynchronously in parallel (one processor per variable)
- Many cognitive scientists suggest the brain runs on MCMC

Consistency of Gibbs (see AIMA 13.4.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time $t: \pi_{t}\left(x_{1}, \ldots, x_{n}\right)$ or $\pi_{t}(\underline{\mathbf{x}})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state $\underline{\underline{x}}$ has a probability $k\left(\underline{\underline{x}}^{\prime} \mid \underline{\underline{x}}\right)$ of reaching a next state $\underline{\mathrm{x}}^{\prime}$
- So $\pi_{t+1}\left(\underline{\mathbf{x}}^{\prime}\right)=\Sigma_{*} k\left(\underline{\mathbf{x}}^{\prime} \mid \underline{\mathbf{x}}\right) \pi_{t}(\underline{\mathbf{x}})$ or, in matrix/vector form $\pi_{t+1}=K \pi_{t}$
- When the process is in equilibrium $\pi_{t+1}=\pi_{t}=\pi$ so $K \pi=\pi$
- This has a unique* solution $\pi=\mathrm{P}\left(x_{1}, \ldots, x_{n} \mid e_{1}, \ldots, e_{k}\right)$
- * Markov chain must be ergodic, i.e., completely connected and aperiodic
- Satisfied if all probabilities are bounded away from 0 and 1
- So for large enough t the next sample will be drawn from the true posterior
- "Large enough" depends on CPTs in the Bayes net; takes longer if nearly deterministic

Bayes Net Sampling Summary

- Prior Sampling P :
- Generate complete samples from $P\left(x_{1}, \ldots, x_{n}\right)$

- Likelihood Weighting $P(Q \mid e)$:
- Weight samples by how well they predict \boldsymbol{e}

- Rejection Sampling $P(Q \mid e)$:
- Reject samples that don't match e

- Gibbs sampling $P(Q \mid e)$:
- Wander around in e space
- Average what you see

CS 188: Artificial Intelligence

Markov Models

Instructors: Stuart Russell and Peyrin Kao
University of California, Berkeley

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Global climate
- Need to introduce time into our models

Markov Models (aka Markov chain/process)

- Value of X at a given time is called the state (usually discrete, finite)

- The transition model $P\left(X_{t} \mid X_{t-1}\right)$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
- x_{t+1} is independent of x_{0}, \ldots, x_{t-1} given x_{t}
- This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)
- Joint distribution $P\left(X_{0}, \ldots, X_{T}\right)=P\left(X_{0}\right) \prod_{t} P\left(X_{t} \mid X_{t-1}\right)$

Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
- Directed acyclic graph, joint = product of conditionals
- No:
- Infinitely many variables (unless we truncate)
- Repetition of transition model not part of standard Bayes net syntax

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P\left(X_{t}=k \mid X_{t-1}=k \pm 1\right)=0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
- How far does it get as a function of t ?
- Expected distance is $O(\sqrt{ } t)$
- Does it get back to 0 or can it go off for ever and not come back?
- In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

We call ourselves Homo sapiens-man the wise—because our intelligence is so important to us.
For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself.

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
- Unigram (zero-order): $P\left(\right.$ Word $\left._{t}=i\right)$
- "logical are as are confusion a may right tries agent goal the was . . ."
- Bigram (first-order): $P\left(\right.$ Word $_{t}=i \mid$ Word $\left._{t-1}=j\right)$
- "systems are very similar computational approach would be represented . . ."
- Trigram (second-order): P (Word $_{t}=i \mid$ Word $_{t-1}=j$, Word $\left._{t-2}=k\right)$
- "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, spam detection, authpr identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
- With probability p, choose an outgoing link at random
- With probability (1-p), choose an arbitrary new page
- Question: What is the stationary distribution over pages?
- l.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

- States \{rain, sun $\}$
- Initial distribution $P\left(X_{0}\right)$

$P\left(X_{0}\right)$	
sun	rain
0.5	0.5

Two new ways of representing the same CPT

- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

X_{t-1}	$P\left(X_{t} \mid X_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

