Markov Chain Monte Carlo

- MCMC (Markov chain Monte Carlo) is a family of randomized algorithms for approximating some quantity of interest over a very large state space
 - Markov chain = a sequence of randomly chosen states ("random walk"), where each state is chosen conditioned on the previous state
 - Monte Carlo = an algorithm (usually based on sampling) that has some probability of producing an incorrect answer
- MCMC = wander around for a bit, average what you see

Gibbs sampling

A particular kind of MCMC

- States are complete assignments to all variables
 - (Cf local search: closely related to simulated annealing!)
- Evidence variables remain fixed, other variables change
- To generate the next state, pick a variable and sample a value for it conditioned on all the other variables: $X'_{i} \sim P(X_{i} | x_{1}, ..., x_{i-1}, x_{i+1}, ..., x_{n})$
 - Will tend to move towards states of higher probability, but can go down too
 - In a Bayes net, $P(X_i | x_{1'}, ..., x_{i+1'}, ..., x_n) = P(X_i | markov_blanket(X_i))$

Theorem: Gibbs sampling is consistent*

Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair

Advantages of MCMC

Samples soon begin to reflect all the evidence in the network

Eventually they are being drawn from the true posterior!

Car Insurance: *P*(*PropertyCost* | *e*)

Car Insurance: *P*(*PropertyCost* | *e*)

Gibbs sampling algorithm

Repeat many times

- Sample a non-evidence variable X, from
- $P(X_{i} | x_{1}, ..., x_{i-1}, x_{i+1}, ..., x_{n}) = P(X_{i} | markov_blanket(X_{i}))$
 - = $\alpha P(X_i | parents(X_i)) \prod_i P(y_i | parents(Y_i))$

Gibbs Sampling Example: P(S | r)

- Step 1: Fix evidence
 - *R* = true

- Step 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | markov_blanket(X))

Randomly

Sample *S* ~ *P*(*S* | *c*, *r*, ¬*w*)

Sample $C \sim P(C \mid s, r)$

Sample $W \sim P(W \mid s, r)$

Markov chain given s, w

Gibbs sampling and MCMC in practice

- The most commonly used method for large Bayes nets
 - See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.
- Can be <u>compiled</u> to run very fast
 - Eliminate all data structure references, just multiply and sample
 - ~100 million samples per second on a laptop
- Can run asynchronously in parallel (one processor per variable)
- Many cognitive scientists suggest the brain runs on MCMC

Consistency of Gibbs (see AIMA 13.4.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time $t: \pi_t(x_1, ..., x_n)$ or $\pi_t(\underline{x})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state <u>x</u> has a probability k(<u>x' | x</u>) of reaching a next state <u>x'</u>
- So $\pi_{t+1}(\underline{\mathbf{x'}}) = \sum_{\mathbf{x}} k(\underline{\mathbf{x'}} | \underline{\mathbf{x}}) \pi_t(\underline{\mathbf{x}})$ or, in matrix/vector form $\pi_{t+1} = \mathbf{K}\pi_t$
- When the process is in equilibrium $\pi_{t+1} = \pi_t = \pi$ so $K\pi = \pi$
- This has a unique* solution $\pi = P(x_1, \dots, x_n \mid e_1, \dots, e_k)$
 - * Markov chain must be *ergodic*, i.e., completely connected and aperiodic
 - Satisfied if all probabilities are bounded away from 0 and 1
- So for large enough t the next sample will be drawn from the true posterior
 - "Large enough" depends on CPTs in the Bayes net; takes *longer* if nearly deterministic

Bayes Net Sampling Summary

- Prior Sampling P :
 - Generate complete samples from $P(x_1,...,x_n)$

- Likelihood Weighting P(Q | e):
 - Weight samples by how well they predict *e*

Reject samples that don't match e

- Gibbs sampling P(Q | e):
 - Wander around in *e* space
 - Average what you see

CS 188: Artificial Intelligence

Markov Models

Instructors: Stuart Russell and Peyrin Kao

University of California, Berkeley

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
 - Global climate
- Need to introduce time into our models

Markov Models (aka Markov chain/process)

Value of X at a given time is called the *state* (usually discrete, finite)

- The transition model $P(X_t | X_{t-1})$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
 - X_{t+1} is independent of X_0, \dots, X_{t-1} given X_t
 - This is a *first-order* Markov model (a *k*th-order model allows dependencies on *k* earlier steps)
- Joint distribution $P(X_0, \dots, X_T) = P(X_0) \prod_t P(X_t \mid X_{t-1})$

Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
 - Directed acyclic graph, joint = product of conditionals
- No:
 - Infinitely many variables (unless we truncate)
 - Repetition of transition model not part of standard Bayes net syntax

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k | X_{t-1} = k \pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
 - How far does it get as a function of t?
 - Expected distance is O(Vt)
 - Does it get back to 0 or can it go off for ever and not come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

We call ourselves *Homo sapiens*—man the wise—because our **intelligence** is so important to us. For thousands of years, we have tried to understand *how we think*; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself.

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
 - Unigram (zero-order): P(Word_t = i)

"logical are as are confusion a may right tries agent goal the was . . ."

- Bigram (first-order): P(Word_t = i | Word_{t-1} = j)
 - "systems are very similar computational approach would be represented . . ."
- Trigram (second-order): $P(Word_t = i | Word_{t-1} = j, Word_{t-2} = k)$
 - "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-*p*), choose an arbitrary new page
- Question: What is the *stationary distribution* over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

- States {rain, sun}
- Initial distribution P(X₀)

P(X ₀)		
sun	rain	
0.5	0.5	

Two new ways of representing the same CPT

• Transition model $P(X_t | X_{t-1})$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

