Markov Chain Monte Carlo

= MCMC (Markov chain Monte Carlo) is a family of randomized
algorithms for approximating some quantity of interest over a

very large state space
= Markov chain = a sequence of randomly chosen states (“random walk”),

where each state is chosen conditioned on the previous state
= Monte Carlo = an algorithm (usually based on sampling) that has some
probability of producing an incorrect answer

= MCMC = wander around for a bit, average what you see



Gibbs sampling

= A particular kind of MCMC

= States are complete assignments to all variables
= (Cf local search: closely related to simulated annealing!)

= Evidence variables remain fixed, other variables change

= To generate the next state, pick a variable and sample a value for it

conditioned on all the other variables: XI.’ ’“P(Xi | Xpper X )Xo 1y X )

= Will tend to move towards states of higher probability, but can go down too

* In a Bayes net, P(X | x,..,x x )= P(X.| markov_blanket(X))
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= Theorem: Gibbs sampllng is consistent™

Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair



Advantages of MCMC

Samples soon begin to
reflect all the evidence
in the network

Eventually they are
being drawn from the
true posterior!
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Gibbs sampling algorithm

= Repeat many times

* Sample a non-evidence variable X from
P(XI. | xl,..,x,._l,xl.+1,..,xn) = P(X,. | markov_blanket(Xl.))
= o P(X.| parents (X)) ]'[j P(yjl parents(Yj))




Gibbs Sampling Example: P( S | r)

= Step 2: Initialize other variables
= Randomly

= Step 1: Fix evidence
= R =true

= Step 3: Repeat
= Choose a non-evidence variable X
= Resample X from P(X | markov_blanket(X))

AP - &P - P - Pk p - dgp

Sample S~ P(S|c, r, "w) Sample C~ P(C| s, r) Sample W~ P(W | s, r)
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Gibbs sampling and MCMC in practice

= The most commonly used method for large Bayes nets
= See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

= Can be compiled to run very fast
* Eliminate all data structure references, just multiply and sample

= ~100 million samples per second on a laptop
= Can run asynchronously in parallel (one processor per variable)
= Many cognitive scientists suggest the brain runs on MCMC



Consistency of Gibbs (see AIMA 13.4.2 for details)

= Suppose we run it for a long time and predict the probability of reaching any
given state at time t: nt(xl,...,xn) or 17 (X)

= Each Gibbs sampling step (pick a variable, resample its value) applied to a
state x has a probability k(x’ | x) of reaching a next state x’

= Sorm, . (X)= Z* k(x" | x) r(x) or, in matrix/vector form m.. =Kt

= When the process is in equilibrium it =m =msoKm=rm
= This has a unique™ solution it = P(xl,...,xn | el,...,ek)

= * Markov chain must be ergodic, i.e., completely connected and aperiodic
= Satisfied if all probabilities are bounded away from 0 and 1

= So for large enough t the next sample will be drawn from the true posterior
= “Large enough” depends on CPTs in the Bayes net; takes longer if nearly deterministic



Bayes Net Sampling Summary

= Prior Sampling P : = Rejection Sampling P(Q | e) :

= Generate complete samples from P(x,...,x ) = Reject samples that don’t match e

= Likelihood Weighting P(Q | e) : = Gibbs sampling P(Q | e) :

= Weight samples by how well they predict e = Wander around in e space

= Average what you see
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Uncertainty and Time

= Often, we want to reason about a sequence of observations
where the state of the underlying system is changing

= Speech recognition

Robot localization

User attention

Medical monitoring

Global climate

» Need to introduce time into our models



Markov Models (aka Markov chain/process)

= Value of X at a given time is called the state (usually discrete, finite)

* The transition model P(Xt | Xt—l) specifies how the state evolves over time
= Stationarity assumption: transition probabilities are the same at all times
= Markov assumption: “future is independent of the past given the present”

. Xt+1 is independent ofXO,..., Xt—l given Xt
= This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)

= Joint distribution P(XO,..., XT) = P(XO) ﬂt P(Xt | Xt-l)



Quiz: are Markov models a special case of Bayes nets?

* Yes and no!

= Yes:
= Directed acyclic graph, joint = product of conditionals

= No:
= Infinitely many variables (unless we truncate)
= Repetition of transition model not part of standard Bayes net syntax
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Example: Random walk in one dimension

< T T T T T 1 >
-1 0 1

4 3 2 2 3 4

State: location on the unbounded integer line
Initial probability: starts at O

Transition model: P(Xt = k| Xt-1= k+1) = 0.5
Applications: particle motion in crystals, stock prices, gambling, genetics, etc.

Questions:

= How far does it get as a function of t?
= Expected distance is O(Vt)

= Does it get back to O or can it go off for ever and not come back?

= |n 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733
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Example: n-gram models

We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us.
For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can
perceive, understand, predict, and manipulate a world far larger and more complicated than itself. ....

= State: word at position t in text (can also build letter n-grams)
= Transition model (probabilities come from empirical frequencies):

= Unigram (zero-order): P(Wordt = )
= “logical are as are confusion a may right tries agent goal the was . . .”
= Bigram (first-order): P(Wordt = | Wordt_lzj)
= “systems are very similar computational approach would be represented . . .”
= Trigram (second-order): P(Wordt = | Wordt_lzj, Wordt_zz k)
= “planning and scheduling are integrated the success of naive bayes model is...”

= Applications: text classification, spam detection, author identification,
language classification, speech recognition



Example: Web browsing

= State: URL visited at step t

= Transition model:
= With probability p, choose an outgoing link at random
= With probability (1-p), choose an arbitrary new page

= Question: What is the stationary distribution over pages?

= |.e,, if the process runs forever, what fraction of time does it spend in
any given page?

= Application: Google page rank




Example: Weather
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= States {rain, sun}

= |nitial distribution 'D(Xo)
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’ Two new ways of representing the same CPT

= Transition model P(X | X, )
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