
Markov Chain Monte Carlo

▪ MCMC (Markov chain Monte Carlo) is a family of randomized 
algorithms for approximating some quantity of interest over a 
very large state space
▪ Markov chain = a sequence of randomly chosen states (“random walk”), 

where each state is chosen conditioned on the previous state
▪ Monte Carlo = an algorithm (usually based on sampling) that has some 

probability of producing an incorrect answer
▪ MCMC = wander around for a bit, average what you see
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Gibbs sampling

▪ A particular kind of MCMC
▪ States are complete assignments to all variables
▪ (Cf local search: closely related to simulated annealing!)

▪ Evidence variables remain fixed, other variables change
▪ To generate the next state, pick a variable and sample a value for it 

conditioned on all the other variables:   Xi’ ~ P(Xi | x1,..,xi-1,xi+1,..,xn)
▪Will tend to move towards states of higher probability, but can go down too
▪ In a Bayes net, P(Xi | x1,..,xi-1,xi+1,..,xn) =  P(Xi | markov_blanket(Xi))

▪ Theorem: Gibbs sampling is consistent*
▪ Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair
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Advantages of MCMC

Samples soon begin to 
reflect all the evidence 
in the network

Eventually they are 
being drawn from the 
true posterior!
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Car Insurance: P(PropertyCost | e)
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Car Insurance: P(PropertyCost | e)
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Gibbs sampling algorithm

▪ Repeat many times
▪ Sample a non-evidence variable  Xi from
P(Xi | x1,..,xi-1,xi+1,..,xn) =  P(Xi | markov_blanket(Xi))

    =   α  P(Xi | parents (Xi))  ∏j P(yj | parents(Yj))
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▪ Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling Example: P( S | r)

▪ Step 1: Fix evidence
▪ R = true

▪ Step 3: Repeat
▪ Choose a non-evidence variable X
▪ Resample X from P(X | markov_blanket(X))
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Markov chain given s, w
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Gibbs sampling and MCMC in practice

▪ The most commonly used method for large Bayes nets
▪ See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

▪ Can be compiled to run very fast
▪ Eliminate all data structure references, just multiply and sample
▪ ~100 million samples per second on a laptop

▪ Can run asynchronously in parallel (one processor per variable)
▪ Many cognitive scientists suggest the brain runs on MCMC
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Consistency of Gibbs (see AIMA 13.4.2 for details)
▪ Suppose we run it for a long time and predict the probability of reaching any 

given state at time t: πt(x1,...,xn) or πt(x) 
▪ Each Gibbs sampling step (pick a variable, resample its value) applied to a 

state x has a probability k(x’ | x) of reaching a next state x’ 

▪ So πt+1(x’) = ∑x k(x’ | x) πt(x) or, in matrix/vector form πt+1 = Kπt 
▪ When the process is in equilibrium πt+1 = πt = π so Kπ = π
▪ This has a unique* solution π = P(x1,...,xn | e1,...,ek)

▪ * Markov chain must be ergodic, i.e., completely connected and aperiodic
▪ Satisfied if all probabilities are bounded away from 0 and 1

▪ So for large enough t the next sample will be drawn from the true posterior
▪ “Large enough” depends on CPTs in the Bayes net; takes longer if nearly deterministic



▪ Rejection Sampling P(Q | e) :
▪ Reject samples that don’t match e

▪ Gibbs sampling P(Q | e) :
▪ Wander around in e space
▪ Average what you see

Bayes Net Sampling Summary
▪ Prior Sampling P :

▪ Generate complete samples from P(x1,…,xn) 

▪ Likelihood Weighting P(Q | e) :
▪ Weight samples by how well they predict e
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Uncertainty and Time

▪ Often, we want to reason about a sequence of observations 
where the state of the underlying system is changing
▪ Speech recognition
▪ Robot localization
▪ User attention
▪ Medical monitoring
▪ Global climate

▪ Need to introduce time into our models



Markov Models (aka Markov chain/process)

▪ Value of X at a given time is called the state (usually discrete, finite)

▪ The transition model P(Xt | Xt-1) specifies how the state evolves over time 
▪ Stationarity assumption: transition probabilities are the same at all times
▪ Markov assumption: “future is independent of the past given the present”

▪ Xt+1 is independent of X0,…, Xt-1 given Xt
▪ This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)

▪ Joint distribution  P(X0,…, XT) = P(X0) ∏t P(Xt | Xt-1)
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Quiz: are Markov models a special case of Bayes nets?

▪ Yes and no!
▪ Yes:
▪ Directed acyclic graph, joint = product of conditionals

▪ No:
▪ Infinitely many variables (unless we truncate)
▪ Repetition of transition model not part of standard Bayes net syntax
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Example: Random walk in one dimension

▪ State: location on the unbounded integer line
▪ Initial probability: starts at 0

▪ Transition model: P(Xt = k| Xt-1= k±1) = 0.5 
▪ Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
▪ Questions: 
▪ How far does it get as a function of t?

▪ Expected distance is O(√t)

▪ Does it get back to 0 or can it go off for ever and not come back?
▪ In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733
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Example: n-gram models

▪ State: word at position t in text (can also build letter n-grams)
▪ Transition model (probabilities come from empirical frequencies):
▪ Unigram (zero-order): P(Wordt = i) 

▪ “logical are as are confusion a may right tries agent goal the was . . .”

▪ Bigram (first-order): P(Wordt = i | Wordt-1= j)
▪  “systems are very similar computational approach would be represented . . .”

▪ Trigram (second-order): P(Wordt = i | Wordt-1= j, Wordt-2= k) 
▪ “planning and scheduling are integrated the success of naive bayes model is . . .”

▪ Applications: text classification, spam detection, author identification, 
language classification, speech recognition
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We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us. 
For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can 
perceive, understand, predict, and manipulate a world far larger and more complicated than itself. ….



Example: Web browsing

▪ State: URL visited at step t
▪ Transition model:
▪ With probability p, choose an outgoing link at random
▪ With probability (1-p), choose an arbitrary new page

▪ Question: What is the stationary distribution over pages?
▪ I.e., if the process runs forever, what fraction of time does it spend in 

any given page?
▪ Application: Google page rank
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Example: Weather

▪ States {rain, sun}
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