Example: Weather
| Mon - -

A ™
,' WA Y
NSAy
r 4

= States {rain, sun}

= |nitial distribution 'D(Xo)

rain

0.5 0.5

’ Two new ways of representing the same CPT

= Transition model P(X | X,)
t-1 0.9

0.9
ERRCCT .@) e
rain . A

rain rain
sun 0.9 0.1
0.7 0.7

rain 0.3 0.7

Weather prediction
= Time 0: <0.5,0.5> _

sun rain

sun 0.9 0.1
rain 0.3 0.7

= What is the weather like at time 17?
" P(X)) =2 , PIX,X,=x,)
. = Zxo P(X0=x0) P(X 1| X0=x0)
. = 0.5<0.9,0.1> + 0.5<0.3,0.7> =<0.6,0.4>

Weather prediction, contd.

« Time 1:<0.6,0.4> [

sun rain

sun 0.9 0.1
rain 0.3 0.7

= What is the weather like at time 27?
" P(X)) =2 , PIX,, X =x))
. = le P(X1=x1) P(X2| X1=x1)
. = 0.6<0.9,0.1> + 0.4<0.3,0.7> =<0.66,0.34>

Weather prediction, contd.

. Time 2: <0.66,0.34> N

sun rain
sun 0.9 0.1
rain 0.3 0.7

= What is the weather like at time 37?
" P(X;) =2, PIX;,X,=x,)
. = sz P(X2=x2) P(X3| X2=x2)
. = 0.66<0.9,0.1> + 0.34<0.3,0.7> =<0.696,0.304>

Forward algorithm (simple form)

Probability from
previous iteration

» What is the state at time
3 P(Xt) - zxt—l P(Xt’Xt—1: -
- = th—l P(Xt—lzxt—l) P(th Xt—lzxt—l)

= [terate this update starting at t=0

Transition model J

/

» This is called a recursive update: P_=g(P_,) = g(g(glg(..P))))

And the same thing in linear algebra

= What is the weather like at time 27?
. P(Xz) = 0.6<0.9,0.1> + 0.4<0.3,0.7> =<0.66,0.34>

* |n matrix-vector form: _

sun

rain

px)=(0303) (64) = (65)

0.9

0.1

rain

0.3

0.7

= |.e., multiply by T, transpose of transition matrix

24

Stationary Distributions

= The limiting distribution is called the stationary distribution P__
of the chain

= |t satisfiesP_=P_ =T P_

oco+1

= Solving for P__in the example:

(56) () -7

0.9p +0.3(1-p) =
p=0.75
Stationary distribution is <0.75,0.25> regardless of starting distribution

— N‘k
© © .
[]
= ‘ ¢

Hidden Markov Models

Hidden Markov Models

= Usually the true state is not observed directly

= Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You observe evidence E at each time step

= Xt is a single discrete variable; £, may be continuous
and may consist of several variables

Example: Weather HMM

= An HMM is defined by:
[wo [rwawy | = Initial distribution: P(X)
sun_| rain = Transition model: P(X_ | X_)

L = Sensor model: P(E | X)
rain | 0.3 0.7 t t

Weather, , Weather, Weather, . [((ﬁ (
"

true false
sun 0.2 0.8
rain 0.9 0.1

Umbrella_, Umbrella, Umbrella,,

HMM as probability model

Joint distribution for Markov model: P(XO,..., X
Joint distribution for hidden Markov model:
P(XO,Xl,..., XT,ET) = P(XO) ﬂt=1:T P(Xt | Xt_l) P(Et | Xt)
Future states are independent of the past given the present

Current evidence is independent of everything else given the current state
Are evidence variables independent of each other?

= P(X,)

PIX, | X

T) t=1:T t-l)

Useful notation:

X =X ,X
a a+

a:b X

1 Ay

Real HMM Examples

Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
= QObservations are words (tens of thousands)
= States are translation options

Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
» QObservations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

= Filtering: P(X t| e t)

» pelief state—input to the decision process of a rational agent
= Prediction: P(Xt+k|elzt) fork>0

= evaluation of possible action sequences; like filtering without the evidence
= Smoothing: P(Xkl el:t) forO<k<t

= better estimate of past states, essential for learning
= Most likely explanation: arg max tP(xl. t | e, t)
= speech recognition, decoding with a noisy channel

31

Inference tasks

Filtering: P(X |e

1)

), k<t Explanation: P(X, _|e
1:t 1:t

Smoothing: P(X |e

Filtering / Monitoring

Filtering, or monitoring, or state estimation, is the task of

maintaining the distribution fl-t = P(th el.t) over time
We start with f, in an initial setting, usually uniform
Filtering is a fundamental task in engineering and science

The Kalman filter (continuous variables, linear dynamics,
Gaussian noise) was invented in 1960 and used for trajectory
estimation in the Apollo program; core ideas used by Gauss for
planetary observations; 788,000 papers on Google Scholar

Example: Robot Localization

Example from
Michael Pfeiffer
T
!
T
Prob 0 1
t=0

Sensor model: four bits for wall/no-wall in each direction,
never more than 1 mistake

Transition model: action may fail with small prob.

Example: Robot Localization

B 0
Prob 0 1

t=1
Lighter grey: was possible to get the reading,

but less likely (required 1 mistake)

Example: Robot Localization

Prob 0 1

t=2

Example: Robot Localization

Prob 0 1

t=3

Example: Robot Localization

Prob 0 1

t=4

Example: Robot Localization

Prob 0 1

t=5

Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form

) P(Xt+1 | el:t+1) - g(et+1’ 'D(th el:t))

: P(Xt+1 | €

1:t+1)

Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form
.P(X_l_ll 1:t+ 1)_g(et 17 P(X |elt))

"D(X 1| ltl)_ (

—aP(e

= P(et+1

X

t+17 "1 t

l Apply Bayes’ rule

]

Apply conditional independence]

1:t)

=/\Ple.. N 2,
Normalize (e | Update

t+1

+1" =Xt

)%%7/

X PX, L e
PZF'\%J PX.t
](: lPre'dic’[X

L vot+l

41

ondition on Xt]

xe

1:t

xt)

Apply conditional
independence

|

Filtering algorithm

- P(X 1 t+ 1) -a P(et+1 |Xl“+1) Z P(X | el t) P t+1
l Normalize I E)date }edlct
. 1:t+1 = I:ORV\/'A‘RD(fl:l‘ / et+1)
= Cost per time step: O(|X|?) where | X| is the number of states
= Time and space costs are constant, independent of t 6o
AW
= O(|X|?) is infeasible for models with many state variables /._, ,\

= We get to invent really cool approximate filtering algorithms

JAWESOome

* Transition matrix T, observation matrix O]t
= Observation matrix has state likelihoods for £_along diagonal

= E.g., for U, =true, O, = (

And the same thing in linear algebra

02 0
0 0.9

= Filtering algorithm becomes

1:t+1

_ T
=a Ot+1T fl:t

)

sun

rain

sun

0.9

0.1

rain

0.3

0.7

43

Example: Weather HMM [([//7/,//

0.6 0.45
predict 0.4 predict 0.55
update / update
f(sun) = 0.5 f(sun) =0.25 f(sun) = 0.154 s || i
f(rain) = 0.5 f(rain) = 0.75 f(rain) = 0.846 sun | 0.9 0.1

rain 0.3 0.7

rw)] L
sun 0.2 0.8

sun rain . :
rain 0.9 0.1
0.5 0.5

Pacman — Hunting Invisible Ghosts with Sonar

) 21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]

Video of Demo Pacman — Sonar

Most Likely Explanation

o PR

Inference tasks

= Filtering: P(X t| e t)
» pelief state—input to the decision process of a rational agent
= Prediction: P(Xt+k|elzt) fork>0

= evaluation of possible action sequences; like filtering without the evidence

= Smoothing: P(Xkl el.t) forO<k<t

= Most likely explanation: arg maxxlth(Xlzt | el:t)

= speech recognition, decoding with a noisy channel

48

Most likely explanation = most probable path

e arg maxX1:tP(x1:t| em)
=arg max,,,a P(x,.., e,.)

sun sun sun sun =arg max, ., P(x,., e,.)
< = arg max,,, P(x,) [], P(x, | x,_,) Ple, | x,)
rain rain rain rain

XO X1 XT

State trellis: graph of states and transitions over time

Each arc represents some transition X, 4 - X,

Each arc has weight P(xt | x, .) P(et | xt) (arcs to initial states have weight P(xo))

t-1
The product of weights on a path is proportional to that state sequence’s probability

Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Forward / Viterbi algorithms

sun

rain

>

< sun X sun X
rain rain
XO Xl

Forward Algorithm (sum)

For each state at time t, keep track of
the total probability of all paths to it

f”+1 = FORWARD(f”, et+1)

=a P(et+1 |Xt+1) th P(Xt+1 | Xt) f1:t

sun

rain

A

Viterbi Algorithm (max)
For each state at time t, keep track of
the maximum probability of any path to it

m.,.. . = VITERBI(M. ., €,,.)

1:1°
1) max , P(X

t+1

1:t+1
= P(e,, X

: [) m

1:t

Viterbi algorithm contd.

0.5 _ s _ : _ 8 0.0136080 sun rain
< Q¢ X G e sun | 0.9 0.1
6 4 0Q rain 0.3 0.7
0.5] o : . 0.0138495
X X X X true false
O 1 2 T sun 0.2 0.8
Ulztrue Uzzfalse U3:true — 1 oo | o1
Time complexity? Space complexity? Number of paths?

o(|X|2T) o(|X] T) o(|x| "

Viterbi in negative log space

10 0.72 2.47 sun rain
: sun sun sun
3 o | 05 | oa
rain | 0.3 0.7
G true false
sun 0.2 0.8
rain 0.9 0.1

argmax of product of probabilities
= argmin of sum of negative log probabilities
= minimum-cost path

Viterbi is essentially breadth-first graph search
What about A*?

