Example: Weather

- States {rain, sun}
- Initial distribution P(X₀)

P(X ₀)	
sun	rain
0.5	0.5

Two new ways of representing the same CPT

• Transition model $P(X_t | X_{t-1})$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Weather prediction

Time 0: <0.5,0.5>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 1?
 - $P(X_1) = \sum_{x^0} P(X_1, X_0 = x_0)$
 - $= \sum_{x^0} P(X_0 = x_0) P(X_1 | X_0 = x_0)$
 - = 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>

Weather prediction, contd.

Time 1: <0.6,0.4>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 2?
 - $P(X_2) = \sum_{x^1} P(X_2, X_1 = x_1)$
 - $= \sum_{x^{1}} P(X_{1} = x_{1}) P(X_{2} | X_{1} = x_{1})$
 - = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Weather prediction, contd.

Time 2: <0.66,0.34>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 3?
 - $P(X_3) = \sum_{x^2} P(X_3, X_2 = x_2)$

- $= \sum_{x^2} P(X_2 = x_2) P(X_3 | X_2 = x_2)$
 - = 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304>

Forward algorithm (simple form)

- Iterate this update starting at t=0
 - This is called a *recursive* update: $P_t = g(P_{t-1}) = g(g(g(g(...P_0))))$

And the same thing in linear algebra

- What is the weather like at time 2?
 - $P(X_2) = 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$
- In matrix-vector form:

$$P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

I.e., multiply by T^T, transpose of transition matrix

Stationary Distributions

- The limiting distribution is called the *stationary distribution* P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^T P_{\infty}$
- Solving for P_∞ in the example:

$$\begin{pmatrix} 0.9 \ 0.3 \\ 0.1 \ 0.7 \end{pmatrix} \begin{pmatrix} p \\ 1-p \end{pmatrix} = \begin{pmatrix} p \\ 1-p \end{pmatrix}$$

0.9p + 0.3(1-p) = p

p = 0.75

Stationary distribution is <0.75,0.25> *regardless of starting distribution*

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence *E* at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Example: Weather HMM

HMM as probability model

- Joint distribution for Markov model: $P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$
- Joint distribution for hidden Markov model:

 $P(X_0, X_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:

$$X_{a:b} = X_{a}, X_{a+1}, ..., X_{b}$$

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)
- Molecular biology:
 - Observations are nucleotides ACGT
 - States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k} | e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence

• Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$

- better estimate of past states, essential for learning
- Most likely explanation: $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

Inference tasks

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1,t} = P(X_t | e_{1,t})$ over time
- We start with f_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations; <u>788,000</u> papers on Google Scholar

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake Transition model: action may fail with small prob.

t=2

t=3

t=4

Filtering algorithm

• Aim: devise a *recursive filtering* algorithm of the form

$$= P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t}))$$

• $P(X_{t+1} | e_{1:t+1}) =$

Filtering algorithm

• Aim: devise a *recursive filtering* algorithm of the form

Filtering algorithm

•
$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

- Cost per time step: $O(|X|^2)$ where |X| is the number of states
- Time and space costs are *constant*, independent of *t*
- $O(|X|^2)$ is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix *T*, observation matrix *O*,
 - Observation matrix has state likelihoods for E_t along diagonal

• E.g., for
$$U_1 = \text{true}, O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$$

Filtering algorithm becomes

$$\boldsymbol{\boldsymbol{f}}_{1:t+1} = \boldsymbol{\alpha} \ \boldsymbol{O}_{t+1} \boldsymbol{T}^{\mathsf{T}} \boldsymbol{f}_{1:t}$$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar

Most Likely Explanation

Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k} | e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence

• Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$

- hetter estimate of past states, essential for learning
- Most likely explanation: $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- arg max_{x1:t} $P(x_{1:t} | e_{1:t})$
 - = arg max_{x1:t} $\alpha P(x_{1:t}, e_{1:t})$ = arg max_{x1:t} $P(x_{1:t}, e_{1:t})$
 - $= \arg \max_{x_{1:t}} P(x_0) \prod_{t} P(x_t \mid x_{t-1}) P(e_t \mid x_t)$

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- The *product* of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, *Viterbi algorithm* computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum) For each state at time *t*, keep track of the *total probability of all paths* to it

$$f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1}|X_{t+1}) \sum_{xt} P(X_{t+1}|x_t) f_{1:t}$

Viterbi Algorithm (max) For each state at time *t*, keep track of the *maximum probability of any path* to it

$$\boldsymbol{m}_{1:t+1} = VITERBI(\boldsymbol{m}_{1:t}, \boldsymbol{e}_{t+1}) \\ = P(\boldsymbol{e}_{t+1}|X_{t+1}) \max_{xt} P(X_{t+1}|x_t) \boldsymbol{m}_{1:t}$$

Viterbi algorithm contd.

W _{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity? O(|X|² T) Space complexity? O(|X|T) Number of paths? O(|X|^T)

Viterbi in negative log space

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

argmax of product of probabilities

- = argmin of sum of negative log probabilities
- = minimum-cost path

Viterbi is essentially breadth-first graph search What about A*?