
Example: Weather

▪ States {rain, sun}
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sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

▪ Initial distribution P(X0) 

▪ Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5



Weather prediction

▪ Time 0: <0.5,0.5>

▪ What is the weather like at time 1?
▪ P(X1) = ∑x0 P(X1,X0=x0)

▪           = ∑x0 P(X0=x0) P(X1| X0=x0)
▪           = 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

▪ Time 1: <0.6,0.4>

▪ What is the weather like at time 2?
▪ P(X2) = ∑x1 P(X2,X1=x1)

▪           = ∑x1 P(X1=x1) P(X2| X1=x1)
▪           = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

▪ Time 2: <0.66,0.34>

▪ What is the weather like at time 3?
▪ P(X3) = ∑x2 P(X3,X2=x2)

▪           = ∑x2 P(X2=x2) P(X3| X2=x2)
▪           = 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304>
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Forward algorithm (simple form)

▪ What is the state at time t?
▪ P(Xt) = ∑xt-1 P(Xt,Xt-1=xt-1)

▪           = ∑xt-1 P(Xt-1=xt-1) P(Xt| Xt-1=xt-1)

▪ Iterate this update starting at t=0
▪ This is called a recursive update: Pt = g(Pt-1) = g(g(g(g( …P0)))) 

Probability from 
previous iteration

Transition model



And the same thing in linear algebra
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▪ What is the weather like at time 2?
▪ P(X2) = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

▪ In matrix-vector form:

▪ P(X2) = (         ) (    ) = (      )

▪ I.e., multiply by TT, transpose of transition matrix
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Stationary Distributions

▪ The limiting distribution is called the stationary distribution  P∞  
of the chain
▪ It satisfies P∞ = P∞+1 =  T

T P∞

▪ Solving for P∞ in the example:

(         ) (  ) = (  )
0.9p + 0.3(1-p) = p
p = 0.75
Stationary distribution is <0.75,0.25> regardless of starting distribution
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Hidden Markov Models



Hidden Markov Models

▪ Usually the true state is not observed directly

▪ Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X
▪ You observe evidence E at each time step

▪ Xt is a single discrete variable; Et may be continuous 
and may consist of several variables
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Example: Weather HMM

Umbrellat-1 Umbrellat Umbrellat+1

Weathert-1 Weathert Weathert+1

▪ An HMM is defined by:
▪ Initial distribution:   P(X0)
▪ Transition model:    P(Xt| Xt-1)
▪ Sensor model:          P(Et| Xt)
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HMM as probability model

▪ Joint distribution for Markov model:  P(X0,…, XT) = P(X0) ∏t=1:T P(Xt | Xt-1)
▪ Joint distribution for hidden Markov model:                                                                  

P(X0,X1,…, XT,ET) = P(X0) ∏t=1:T P(Xt | Xt-1) P(Et | Xt) 
▪ Future states are independent of the past given the present
▪ Current evidence is independent of everything else given the current state
▪ Are evidence variables independent of each other?
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Useful notation: 

Xa:b =  Xa , Xa+1, …, Xb



Real HMM Examples

▪ Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)
▪ States are specific positions in specific words (so, tens of thousands)

▪ Machine translation HMMs:
▪ Observations are words (tens of thousands)
▪ States are translation options

▪ Robot tracking:
▪ Observations are range readings (continuous)
▪ States are positions on a map (continuous)

▪ Molecular biology:
▪ Observations are nucleotides ACGT
▪ States are coding/non-coding/start/stop/splice-site etc.



Inference tasks

▪ Filtering: P(Xt|e1:t)
▪ belief state—input to the decision process of a rational agent 

▪ Prediction: P(Xt+k|e1:t) for k > 0 
▪ evaluation of possible action sequences; like filtering without the evidence 

▪ Smoothing: P(Xk|e1:t) for 0 ≤ k < t
▪ better estimate of past states, essential for learning 

▪ Most likely explanation: arg maxx1:t P(x1:t | e1:t) 
▪ speech recognition, decoding with a noisy channel 
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Inference tasks

Filtering: P(Xt|e1:t)
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Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)



Filtering / Monitoring

▪ Filtering, or monitoring, or state estimation, is the task of 
maintaining the distribution f1:t = P(Xt|e1:t) over time

▪ We start with f0 in an initial setting, usually uniform

▪ Filtering is a fundamental task in engineering and science

▪ The Kalman filter (continuous variables, linear dynamics, 
Gaussian noise) was invented in 1960 and used for trajectory 
estimation in the Apollo program; core ideas used by Gauss for 
planetary observations; 788,000 papers on Google Scholar



Example: Robot Localization

t=0
Sensor model: four bits for wall/no-wall in each direction, 

never more than 1 mistake
Transition model: action may fail with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, 

but less likely (required 1 mistake)

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3
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Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Filtering algorithm

▪ Aim: devise a recursive filtering algorithm of the form
▪ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

▪ P(Xt+1|e1:t+1) =



Filtering algorithm

▪ Aim: devise a recursive filtering algorithm of the form
▪ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

▪ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
▪                        = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
▪                        = α P(et+1|Xt+1) P(Xt+1| e1:t)
▪                        = α P(et+1|Xt+1) ∑xt P(xt | e1:t) P(Xt+1| xt, e1:t)
▪                        = α P(et+1|Xt+1) ∑xt P(xt | e1:t) P(Xt+1| xt)

41

Apply Bayes’ rule

Apply conditional independence

PredictUpdateNormalize

Condition on Xt

Apply conditional 
independence



Filtering algorithm

▪ P(Xt+1|e1:t+1) = α P(et+1|Xt+1) ∑xt P(xt | e1:t) P(Xt+1| xt)

▪ f1:t+1 = FORWARD(f1:t , et+1)
▪ Cost per time step: O(|X|2) where |X| is the number of states
▪ Time and space costs are constant, independent of t
▪ O(|X|2) is infeasible for models with many state variables
▪ We get to invent really cool approximate filtering algorithms42

PredictUpdateNormalize



And the same thing in linear algebra
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▪ Transition matrix T, observation matrix Ot
▪ Observation matrix has state likelihoods for Et along diagonal

▪ E.g., for U1 = true, O1 = (         ) 

▪ Filtering algorithm becomes
▪ f1:t+1 = α Ot+1TT f1:t
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Example: Weather HMM

Umbrella1 Umbrella2

Weather0 Weather1 Weather2

f(sun) = 0.5
f(rain)  = 0.5
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f(rain) = 0.846

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

P(W0)

sun rain

0.5 0.5

predict predict

update update



Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar



Most Likely Explanation



Inference tasks

▪ Filtering: P(Xt|e1:t)
▪ belief state—input to the decision process of a rational agent 

▪ Prediction: P(Xt+k|e1:t) for k > 0 
▪ evaluation of possible action sequences; like filtering without the evidence 

▪ Smoothing: P(Xk|e1:t) for 0 ≤ k < t
▪ better estimate of past states, essential for learning 

▪ Most likely explanation: arg maxx1:t P(x1:t | e1:t) 
▪ speech recognition, decoding with a noisy channel 
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Most likely explanation = most probable path
▪ State trellis: graph of states and transitions over time

▪ Each arc represents some transition xt-1 → xt
▪ Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0) )
▪ The product of weights on a path is proportional to that state sequence’s probability 
▪ Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

• arg maxx1:t P(x1:t | e1:t)
     = arg maxx1:t α P(x1:t , e1:t)
     = arg maxx1:t  P(x1:t , e1:t) 
     = arg maxx1:t P(x0) ∏t P(xt | xt-1) P(et | xt) 

sun

rain

sun

rain

sun

rain

sun

rain

  X0                   X1                 …                      XT



Forward / Viterbi algorithms

Forward Algorithm (sum)
For each state at time t, keep track of 
the total probability of all paths to it
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Viterbi Algorithm (max)
For each state at time t, keep track of     
the maximum probability of any path to it

f1:t+1 = FORWARD(f1:t , et+1)
    = α P(et+1|Xt+1) ∑xt P(Xt+1| xt) f1:t 

m1:t+1 = VITERBI(m1:t , et+1)
    = P(et+1|Xt+1) maxxt P(Xt+1| xt) m1:t 



Viterbi algorithm contd.

Time complexity?
O(|X|2 T)

  X0                   X1                 X2                      XT
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Viterbi in negative log space

argmax of product of probabilities 
= argmin of sum of negative log probabilities 
= minimum-cost path

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47

4.06

0.72

3.84

6.64

2.06

2.47

0.67

3.47

4.06
S

G

Viterbi is essentially breadth-first graph search
What about A*?


