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Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)
§ We want to track multiple variables over time, using 

multiple sources of evidence

§ Idea: Repeat a fixed Bayes net structure at each time

§ Variables at time t can have parents at time t-1
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DBNs and HMMs

§ Every HMM is a single-variable DBN
§ Every discrete DBN is an HMM 

§ HMM state is Cartesian product of DBN state variables

§ Sparse dependencies => exponentially fewer parameters in DBN
§ E.g., 20 Boolean state variables, 3 parents each; 

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters
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Exact Inference in DBNs

§ Variable elimination applies to dynamic Bayes nets

§ Offline: “unroll” the network for T time steps, then eliminate variables to find P(XT|e1:T)

§ Online: eliminate all variables from the previous time step; store factors for current time only
§ Problem: largest factor contains all variables for current time (plus a few more)
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Application: ICU monitoring

§ State: variables describing physiological state of patient
§ Evidence: values obtained from monitoring devices
§ Transition model: physiological dynamics, sensor dynamics
§ Query variables: pathophysiological conditions (a.k.a. bad things)
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Toy DBN: heart rate monitoring
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ICU data: 22 variables, 1min ave
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Blood pressure measurement



One-second vs one-minute data









ALARM





Particle Filtering



We need a new algorithm!

§ When |X| is more than 106 or so (e.g., 3 ghosts in a 10x20 world), exact 
inference becomes infeasible

§ Likelihood weighting fails completely – number of samples needed grows 
exponentially with T
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We need a new idea!

§ The problem: sample state trajectories go off into low-probability regions, 
ignoring the evidence; too few “reasonable” samples

§ Solution: kill the bad ones, make more of the good ones
§ This way the population of samples stays in the high-probability region
§ This is called resampling or survival of the fittest
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Particle Filtering
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§ Represent belief state by a set of samples
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large

§ This is how robot localization works in practice
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Representation: Particles
§ Our representation of P(X) is now a list of N << |X| particles
§ P(x) approximated by number of particles with value x

§ So, many x may have P(x) = 0 ! 
§ More particles => more accuracy (cf. frequency histograms)
§ Usually we want a low-dimensional marginal

§ E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?” Particles:
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Particle Filtering: Prediction step

§ Particle j in state xt
(j) samples a new state 

directly from the transition model:
§ xt+1(j) ~  P(Xt+1 | xt(j))

§ Here, most samples move clockwise, but some 
move in another direction or stay in place
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§ After observing et+1 :

§ As in likelihood weighting, weight each 
sample based on the evidence
§ w(j) = P(et+1|xt+1

(j))

§ Particles that fit the  data better get 
higher weights, others get lower weights

§ Normalize the weights across all particles

Particle Filtering: Update step

Particles:
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Particle Filtering: Resample

§ Rather than tracking weighted samples, 
we resample

§ N times, we choose from our weighted 
sample distribution  
(i.e., draw with replacement)

§ Now the update is complete for this 
time step, continue with the next one 
(with weights reset to 1/N)

Particles:
(3,2)  w=.17
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Summary: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution
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Prediction Update/Weight Resample

Particles:
(3,2)
(2,3)
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(3,2)  w=.9
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Consistency: see proof in AIMA Ch. 14



Particle filtering on umbrella model
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Robot Mapping

§ SLAM: Simultaneous Localization And Mapping
§ Robot does not know map or location
§ State xt(j) consists of position+orientation, map!
§ (Each map usually inferred exactly given sampled 

position+orientation sequence: RBPF)

DP-SLAM, Ron Parr



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]


