
CS 188: Artificial Intelligence
Dynamic Bayes Nets and Particle Filters

Instructor: Stuart Russell and Peyrin Kao

University of California, Berkeley

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)
§ We want to track multiple variables over time, using

multiple sources of evidence

§ Idea: Repeat a fixed Bayes net structure at each time

§ Variables at time t can have parents at time t-1

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

t =1 t =2

G3
a

E3a E3b

G3
b

t =3

DBNs and HMMs

§ Every HMM is a single-variable DBN
§ Every discrete DBN is an HMM

§ HMM state is Cartesian product of DBN state variables

§ Sparse dependencies => exponentially fewer parameters in DBN
§ E.g., 20 Boolean state variables, 3 parents each;

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters

Xt+1Xt

Yt+1Yt

Zt+1Zt
XYZt+1XYZt

Exact Inference in DBNs

§ Variable elimination applies to dynamic Bayes nets

§ Offline: “unroll” the network for T time steps, then eliminate variables to find P(XT|e1:T)

§ Online: eliminate all variables from the previous time step; store factors for current time only
§ Problem: largest factor contains all variables for current time (plus a few more)

t =1 t =2 t =3

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

G3
a

E3a E3b

G3
bG3
b

Application: ICU monitoring

§ State: variables describing physiological state of patient
§ Evidence: values obtained from monitoring devices
§ Transition model: physiological dynamics, sensor dynamics
§ Query variables: pathophysiological conditions (a.k.a. bad things)

7

Toy DBN: heart rate monitoring
parameter
variable

state
variable

sensor
variable

sensor state
variable

ICU data: 22 variables, 1min ave

11

Blood pressure measurement

One-second vs one-minute data

ALARM

Particle Filtering

We need a new algorithm!

§ When |X| is more than 106 or so (e.g., 3 ghosts in a 10x20 world), exact
inference becomes infeasible

§ Likelihood weighting fails completely – number of samples needed grows
exponentially with T

X1X0 X2 X3

E1 E2 E3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Av
g a

bs
olu

te
err

or

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

We need a new idea!

§ The problem: sample state trajectories go off into low-probability regions,
ignoring the evidence; too few “reasonable” samples

§ Solution: kill the bad ones, make more of the good ones
§ This way the population of samples stays in the high-probability region
§ This is called resampling or survival of the fittest

t=2 t=7

Particle Filtering

0.01 0.1

0.01 0.03

0.03

0.2

0.02 0.2 0.4

§ Represent belief state by a set of samples
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large

§ This is how robot localization works in practice

0 0.1

0 0

0

0.2

0 0.2 0.5

Representation: Particles
§ Our representation of P(X) is now a list of N << |X| particles
§ P(x) approximated by number of particles with value x

§ So, many x may have P(x) = 0 !
§ More particles => more accuracy (cf. frequency histograms)
§ Usually we want a low-dimensional marginal

§ E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?” Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Prediction step

§ Particle j in state xt
(j) samples a new state

directly from the transition model:
§ xt+1(j) ~ P(Xt+1 | xt(j))

§ Here, most samples move clockwise, but some
move in another direction or stay in place

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

§ After observing et+1 :

§ As in likelihood weighting, weight each
sample based on the evidence
§ w(j) = P(et+1|xt+1

(j))

§ Particles that fit the data better get
higher weights, others get lower weights

§ Normalize the weights across all particles

Particle Filtering: Update step

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

X .17
X .04
X .17
X .08
X .08
X .17
X .02
X .04
X .17
X .08

Particle Filtering: Resample

§ Rather than tracking weighted samples,
we resample

§ N times, we choose from our weighted
sample distribution
(i.e., draw with replacement)

§ Now the update is complete for this
time step, continue with the next one
(with weights reset to 1/N)

Particles:
(3,2) w=.17
(2,3) w=.04
(3,2) w=.17
(3,1) w=.08
(3,3) w=.08
(3,2) w=.17
(1,3) w=.02
(2,3) w=.04
(3,2) w=.17
(2,2) w=.08

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Summary: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Prediction Update/Weight Resample

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Consistency: see proof in AIMA Ch. 14

Particle filtering on umbrella model

28

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Av
g a

bs
olu

te
err

or

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

Robot Mapping

§ SLAM: Simultaneous Localization And Mapping
§ Robot does not know map or location
§ State xt(j) consists of position+orientation, map!
§ (Each map usually inferred exactly given sampled

position+orientation sequence: RBPF)

DP-SLAM, Ron Parr

Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]

