CS 188: Artificial Intelligence

Rational Decisions

Instructor: Stuart Russell and Peyrin Kao
University of California, Berkeley

Utilities

Maximum Expected Utility

- Principle of maximum expected utility:
- A rational agent should chose the action that maximizes its expected utility, given its knowledge
- Questions:
- Where do utilities come from?
- How do we know such utilities even exist?

- How do we know that averaging even makes sense?
- What if our behavior (preferences) can't be described by utilities?

The need for numbers

- For worst-case minimax reasoning, terminal value scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- The optimal decision is invariant under any monotonic transformation
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any "rational" preferences can be summarized as a utility function

- We hard-wire utilities and let behaviors emerge
- Why don't we let agents pick utilities?
- Why don't we prescribe behaviors?

Utilities: Uncertain Outcomes

Preferences

- An agent must have preferences among:

A Prize

A Lottery

- Preference: $A>B$
- Indifference: $A \sim B$

Rationality

Rational Preferences

- We want some constraints on preferences before we call them rational, such as:

$$
\text { Axiom of Transitivity: }(A>B) \wedge(B>C) \Rightarrow(A>C)
$$

- For example: an agent with intransitive preferences can be induced to give away all of its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If $C>A$, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality

Orderability:

$$
(A>B) \vee(B>A) \vee(A \sim B)
$$

Transitivity:

$$
(A>B) \wedge(B>C) \Rightarrow(A>C)
$$

Continuity:

$$
(A>B>C) \Rightarrow \exists p[p, A ; 1-p, C] \sim B
$$

Substitutability:

$$
(A \sim B) \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]
$$

Monotonicity:

$$
\begin{aligned}
& (A>B) \Rightarrow \\
& \quad(p \geq q) \Leftrightarrow[p, A ; 1-p, B] \geq[q, A ; 1-q, B]
\end{aligned}
$$

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \geq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=p_{1} U\left(S_{1}\right)+\ldots+p_{n} U\left(S_{n}\right)
\end{aligned}
$$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Optimal policy invariant under positive affine transformation $U^{\prime}=a U+b, a>0$

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: rationality does not require representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tic-tac-toe

Human Utilities

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
- Compare a prize A to a standard lottery L_{p} between
- "best possible prize" u_{T} with probability p
- "worst possible catastrophe" u_{\perp} with probability 1-p
- Adjust lottery probability p until indifference: $A \sim L_{p}$

- Resulting p is a utility in $[0,1]$

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery $L=[p, \$ X ;(1-p), \$ Y]$
- The expected monetary value $\mathrm{EMV}(\mathrm{L})=p X+(1-p) Y$
- The utility is $U(L)=p U(\$ X)+(1-p) U(\$ Y)$
- Typically, $U(L)<U(E M V(L))$

- In this sense, people are risk-averse
- E.g., how much would you pay for a lottery ticket L=[0.5, \$10,000; 0.5, \$0]?
- The certainty equivalent of a lottery $\operatorname{CE}(L)$ is the cash amount such that $C E(L) \sim L$
- The insurance premium is $\mathrm{EMV}(L)-\mathrm{CE}(L)$
- If people were risk-neutral, this would be zero!

(a)

(b)

Post-decision Disappointment: the Optimizer's Curse

- Usually we don’t have direct access to exact utilities, only estimates
- E.g., you could make one of k investments
- An unbiased expert assesses their expected net profit V_{1}, \ldots, V_{k}
- You choose the best one V^{*}
- With high probability, its actual value is considerably less than V^{*}
- This is a serious problem in many areas:
- Future performance of mutual funds
- Efficacy of drugs measured by trials
- Statistical significance in scientific papers
- Winning an auction

Suppose true net profit is 0 and estimate $\sim N(0,1)$;
Max of k estimates:

Utilities of Sequences

- What preferences should an agent have over prize sequences?
- More or less? $\quad[1,2,2]$ or $\quad[2,3,4]$
- Now or later? $[0,0,1]$ or $[1,0,0]$

Stationary Preferences

- Theorem: if we assume stationary preferences: $\left[a_{1}, a_{2}, \ldots\right]>\left[b_{1}, b_{2}, \ldots\right] \Leftrightarrow\left[c, a_{1}, a_{2}, \ldots\right]>\left[c, b_{1}, b_{2}, \ldots\right]$ then there is only one way to define utilities:
- Additive discounted utility:

$$
U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+\nu r_{1}+\nu^{2} r_{2}+\ldots
$$ where $\gamma \in[0,1]$ is the discount factor

Invariance for sequences

- Invariance for utilities (reminder):

Optimal policy invariant under positive affine transformation $U^{\prime}=a U+b, a>0$

- Invariance for rewards:

Optimal policy is also invariant under potential transformation:

$$
R^{\prime}\left(\mathrm{s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)=R\left(\mathrm{~s}, \mathrm{a}, \mathrm{~s}^{\prime}\right)+\gamma \Phi\left(\mathrm{s}^{\prime}\right)-\Phi(\mathrm{s})
$$

where Φ is any function of state

- These shaping rewards can massively speed up RL
- Soccer example: $R\left(\mathrm{~s}, \mathrm{a}, \mathrm{s}^{\prime}\right)=+3$ for a win, +1 for a draw, 0 for a loss

$$
\Phi(s)=(100 \text { * goal difference) }+ \text { (distance to goal / D) + 0.1(possession) }
$$

Decision Networks

Decision Networks

Decision Networks

- Decision network = Bayes net + Actions + Utilities
\square - Action nodes (rectangles, cannot have parents, will have value fixed by algorithm)
- Utility nodes (diamond, depends on action and chance nodes)
- Decision algorithm:
- Fix evidence e
- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e, a)$ for parents W of U
- Compute expected utility $\sum_{w} P(w \mid e, a) U(a, w)$

- Return action with highest expected utility

Example: Take an umbrella?

- Decision algorithm:
- Fix evidence e
- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e, a)$ for parents W of U
- Compute expected utility of action $a: \sum_{w} P(w \mid e, a) U(a, w)$

A	W	$U(A, W)$
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

- Return action with highest expected utility

Umbrella = leave

$$
\begin{aligned}
& \text { EU }(\text { leave } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) U(\text { leave }, w) \\
& \quad=0.34 \times 100+0.66 \times 0=34
\end{aligned}
$$

Umbrella = take

$$
\begin{aligned}
& \text { EU }(\text { take } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) U(\text { take }, w) \\
& \quad=0.34 \times 20+0.66 \times 70=53
\end{aligned}
$$

Optimal decision = take!

Decision network with utilities on outcome states

Value of Information

Value of information

- Suppose you haven't yet seen the forecast
- EU(leave |) $=0.7 \times 100+0.3 \times 0=70$
- EU(take |) $=0.7 \times 20+0.3 \times 70=35$
- What if you look at the forecast?
- If Forecast=good
- EU(leave | $\mathrm{F}=\mathrm{good}$) $=0.89 \times 100+0.11 \times 0=89$
- EU(take $\mid \mathrm{F}=$ good) $=0.89 \times 20+0.11 \times 70=25$
- If Forecast=bad Bayes net inference!
- EU(leave | F=bad) $100+0.66 \times 0=34$
- EU(take | F=b2 $\quad=0.34 \times 20+0.66 \times 70=53$
- $\mathrm{P}($ Forecast $)=<0.65,0.35>$
- Expected utility given forecast
- $=0.65 \times 89+0.35 \times 53=76.4$
- Value of information $=76.4-70=6.4$

Video of Demo Ghostbusters with VPI

Value of information contd.

- General idea: value of information = expected improvement in decision quality from observing value of a variable
- E.g., oil company deciding on seismic exploration and test drilling
- E.g., doctor deciding whether to order a blood test
- E.g., person deciding on whether to look before crossing the road
- Key point: decision network contains everything needed to compute it!
- $\operatorname{VPI}\left(E_{i} \mid \mathrm{e}\right)=\left[\sum_{e_{i}} P\left(e_{i} \mid e\right) \max _{a} \mathrm{EU}\left(a \mid e_{i}, e\right)\right]-\max _{a} \mathrm{EU}(a \mid e)$

VPI Properties

VPI is non-negative! $\operatorname{VPI}\left(E_{i} \mid \mathrm{e}\right) \geq 0$

VPI is not (usually) additive: $\operatorname{VPI}\left(E_{i}, E_{j} \mid \mathrm{e}\right) \neq \operatorname{VPI}\left(E_{i} \mid \mathrm{e}\right)+\operatorname{VPI}\left(E_{j} \mid \mathrm{e}\right)$

VPI is order-independent: $\operatorname{VPI}\left(E_{i}, E_{j} \mid \mathrm{e}\right)=\operatorname{VPI}\left(E_{j}, E_{i} \mid e\right)$

