CS 188: Artificial Intelligence

Decision Networks and Value of Information

Decision Networks

Decision Networks

Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
- Bayes nets with nodes for utility and actions
- Lets us calculate the expected utility for each action
- New node types:
- Chance nodes (just like BNs)
- Actions (rectangles, cannot have parents, act as observed evidence)

- Utility node (diamond, depends on action and chance nodes)

Decision Networks

- Action selection
- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action

Decision Networks

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave })=\sum_{w} P(w) U(\text { leave }, w) \\
& =0.7 \cdot 100+0.3 \cdot 0=70
\end{aligned}
$$

Umbrella = take

$$
\mathrm{EU}(\text { take })=\sum_{w} P(w) U(\text { take }, w)
$$

$$
=0.7 \cdot 20+0.3 \cdot 70=35
$$

Optimal decision = leave

$$
\operatorname{MEU}(\varnothing)=\max _{a} \operatorname{EU}(a)=70
$$

W	$P(W)$
sun	0.7
rain	0.3

Decision Networks: Notation

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave })=\sum_{w} P(w) U(\text { leave }, w) \\
& =0.7 \cdot 100+0.3 \cdot 0=70
\end{aligned}
$$

Umbrella = take

$$
\begin{aligned}
& \mathrm{EU}(\text { take })=\sum_{w} P(w) U(\text { take }, w) \\
& =0.7 \cdot 20+0.3 \cdot 70=35
\end{aligned}
$$

Optimal decision = leave

$$
\operatorname{MEU}(\varnothing)=\max _{a} \operatorname{EU}(a)=70
$$

- EU(leave) = Expected Utility of taking action leave
- In the parentheses, we write an action
- Calculating EU requires taking an expectation over chance node outcomes
- $\operatorname{MEU}(\varnothing)=$ Maximum Expected Utility, given no information
- In the parentheses, we write the evidence (which nodes we know)
- Calculating MEU requires taking a maximum over several expectations (one EU per action)

Decisions as Outcome Trees

- Almost exactly like expectimax / MDPs
- What's changed?

Example: Decision Networks

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave } \mid \text { bad })=\sum_{w} P(w \mid \text { bad }) U(\text { leave, } w) \\
& \quad=0.34 \cdot 100+0.66 \cdot 0=34
\end{aligned}
$$

Umbrella = take

$$
\begin{aligned}
& \mathrm{EU}(\text { take } \mid \text { bad })=\sum_{w} P(w \mid \text { bad }) U(\text { take }, w) \\
& =0.34 \cdot 20+0.66 \cdot 70=53
\end{aligned}
$$

Optimal decision = take

Decision Networks: Notation

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave } \mid \text { bad })=\sum_{w} P(w \mid \text { bad }) U(\text { leave }, w) \\
& \quad=0.34 \cdot 100+0.66 \cdot 0=34
\end{aligned}
$$

Umbrella = take

$$
\begin{aligned}
& \mathrm{EU}(\text { take } \mid \text { bad })=\sum_{w} P(w \mid \text { bad }) U(\text { take }, w) \\
& \quad=0.34 \cdot 20+0.66 \cdot 70=53
\end{aligned}
$$

Optimal decision = take

$$
\operatorname{MEU}(F=\mathrm{bad})=\max _{a} \mathrm{EU}(a \mid \mathrm{bad})=53
$$

- EU(leave|bad) = Expected Utility of taking action leave, given you know the forecast is bad
- Left side of conditioning bar: Action being taken
- Right side of conditioning bar: The random variable(s) we know the value of (evidence)
- MEU(F=bad) = Maximum Expected Utility, given you know the forecast is bad
- In the parentheses, we write the evidence (which nodes we know)

Decisions as Outcome Trees

Ghostbusters Decision Network

Value of Information

Value of Information

- Idea: compute value of acquiring evidence
- Can be done directly from decision network
- Example: buying oil drilling rights
- Two blocks A and B, exactly one has oil, worth k
- You can drill in one location
- Prior probabilities 0.5 each, \& mutually exclusive
- Drilling in either A or B has $E U=k / 2, M E U=k / 2$
- Question: what's the value of information of O?
- Value of knowing which of A or B has oil
- Value is expected gain in MEU from new info
- Survey may say "oil in a" or "oil in b", prob 0.5 each
- If we know OilLoc, MEU is k (either way)
- Gain in MEU from knowing OilLoc?
- VPI(OilLoc) $=k / 2$
- Fair price of information: $k / 2$

VPI Example: Weather

MEU with no evidence

$$
\operatorname{MEU}(\not)=\max _{a} \operatorname{EU}(a)=70
$$

MEU if forecast is bad

$$
\operatorname{MEU}(F=\mathrm{bad})=\max _{a} \operatorname{EU}(a \mid \mathrm{bad})=53
$$

MEU if forecast is good

$$
\operatorname{MEU}(F=\operatorname{good})=\max _{a} \operatorname{EU}(a \mid \operatorname{good})=95
$$

A	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Forecast distribution

F	$P(F)$
good	0.59
bad	0.41

$$
0.59 \cdot(95)+0.41 \cdot(53)-70
$$

$$
\operatorname{VPI}\left(E^{\prime} \mid e\right)=\left(\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)\right)-\operatorname{MEU}(e)
$$

Value of Information

- Assume we have evidence $\mathrm{E}=\mathrm{e}$. Value if we act now:

$$
\operatorname{MEU}(e)=\max _{a} \sum_{s} P(s \mid e) U(s, a)
$$

- Assume we see that $\mathrm{E}^{\prime}=\mathrm{e}^{\prime}$. Value if we act then:
$\operatorname{MEU}\left(e, e^{\prime}\right)=\max _{a} \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)$
- BUT E^{\prime} is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E^{\prime} is revealed and then we act:

$$
\operatorname{MEU}\left(e, E^{\prime}\right)=\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)
$$

- Value of information: how much MEU goes up by revealing E^{\prime} first then acting, over acting now:

$$
\operatorname{VPI}\left(E^{\prime} \mid e\right)=\operatorname{MEU}\left(e, E^{\prime}\right)-\operatorname{MEU}(e)
$$

VPI: Notation

- $\mathrm{MEU}(\mathrm{e})=$ Maximum Expected Utility, given evidence $\mathrm{E}=\mathrm{e}$
- In the parentheses, we write the evidence (which nodes we know)
- Calculating MEU requires taking a maximum over several expectations (one EU per action)
- $\operatorname{VPI}\left(E^{\prime} \mid e\right)=$ Expected gain in utility for knowing the value of E^{\prime}, given that I know the value of e so far
- Left side of conditioning bar: The random variable(s) we want to know the value of revealing
- Right side of conditioning bar: The random variable(s) we already know the value of
- Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome of E^{\prime}, because we don't know the value of E^{\prime})
$\operatorname{MEU}(e)=\max _{a} \sum_{s} P(s \mid e) U(s, a)$
$\operatorname{MEU}\left(e, e^{\prime}\right)=\max _{a} \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)$

$$
\operatorname{VPI}\left(E^{\prime} \mid e\right)=\left(\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)\right)-\operatorname{MEU}(e)
$$

VPI: Computation Workflow

$$
=\mathrm{VPI}\left(E^{\prime} \mid e\right)
$$

$-\mathrm{MEU}(e)$

$\operatorname{MEU}(e)=\max _{a} \mathrm{EU}(a \mid e)$
Maximum over actions (we control action, and
take the best one)
$\mathrm{EU}(a \mid e)=\sum_{x} P(x \mid e) U(a, x)$
Expectation over x (outcome of the chance nodes that affect utility)

VPI Properties

- Nonnegative

$$
\forall E^{\prime}, e: \operatorname{VPI}\left(E^{\prime} \mid e\right) \geq 0
$$

- Nonadditive
(think of observing E_{j} twice)

$$
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) \neq \operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e\right)
$$

- Order-independent

$$
\begin{aligned}
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) & =\operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e, E_{j}\right) \\
& =\operatorname{VPI}\left(E_{k} \mid e\right)+\operatorname{VPI}\left(E_{j} \mid e, E_{k}\right)
\end{aligned}
$$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?

- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be $\$ 0$ or
 $\$ 100$. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Value of Imperfect Information?

- No such thing (as we formulate it)
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(OilLoc) ?
- VPI(ScoutingReport) ?
- VPI(Weather) ?

Next Time: Machine Learning

