CS 188: Artificial Intelligence Perceptrons and Logistic Regression

Spring 2023
University of California, Berkeley

Linear Classifiers

Feature Vectors

$$
x
$$

$$
f(x)
$$

y

Some (Simplified) Biology

- Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$
\operatorname{activation}_{w}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)
$$

- If the activation is:
- Positive, output +1
- Negative, output-1

Weights

Dot product $w \cdot f$ positive means the positive class (spam)

Do these weights make sense for spam classification?

Review: Vectors

- A tuple like $(2,3)$ can be interpreted two different ways:

A point on a coordinate grid

A vector in space. Notice we are not on a coordinate grid.

- A tuple with more elements like $(2,7,-3,6)$ is a point or vector in higherdimensional space (hard to visualize)

Review: Vectors

- Definition of dot product:
- $a \cdot b=|a||b| \cos (\theta)$
- θ is the angle between the vectors a and b
- Consequences of this definition:
- Vectors closer together
= "similar" vectors
= smaller angle θ between vectors
$=$ larger (more positive) dot product
- If $\theta<90^{\circ}$, then dot product is positive
- If $\theta=90^{\circ}$, then dot product is zero
- If $\theta>90^{\circ}$, then dot product is negative

$a \cdot b$ large, positive
$a \cdot b$ small, positive

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- In the space of feature vectors

- Examples are points
- Any weight vector is a hyperplane (divides space into two sides)
- One side corresponds to $Y=+1$, the other corresponds to $Y=-1$
- In the example:

\boldsymbol{U}		
free $\boldsymbol{:}$ money $:$	4	

- f.w >0 when $4 *$ free $+2 *$ money >0
$\mathrm{f} \cdot \mathrm{w}<0$ when 4^{*} free $+2 *$ money <0
These equations correspond to two halves of the feature space
- $\mathrm{f} \cdot \mathrm{w}=0$ when $4 *$ free +2 *money $=0$

This equation corresponds to the decision boundary (a line in 2D, a hyperplane in higher dimensions)

Weight Updates

Learning: Binary Perceptron

- Start with weights $=0$
- For each training instance:
- Classify with current weights

- If correct (i.e., $\mathrm{y}=\mathrm{y}^{*}$), no change!

- If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights $=0$
- For each training instance:
- Classify with current weights

$$
y= \begin{cases}+1 & \text { if } w \cdot f(x) \geq 0 \\ -1 & \text { if } w \cdot f(x)<0\end{cases}
$$

- If correct (i.e., $\mathrm{y}=\mathrm{y}^{*}$), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y^{*} is -1 .

$$
w=w+y^{*} \cdot f
$$

Learning: Binary Perceptron

- Misclassification, Case I:
- w $\cdot \mathrm{f}>0$, so we predict +1
- True class is -1
- We want to modify w to w' such that dot product w' $\cdot \mathrm{f}$ is lower
- Update if we misclassify a true class $\mathbf{- 1}$ sample: $\mathbf{w}^{\prime}=\mathbf{w} \mathbf{- f}$
- Proof: $w^{\prime} \cdot f=(w-f) \cdot f=(w \cdot f)-(f \cdot f)=(w \cdot f)-|f|^{2}$ Note that $|f|^{2}$ is always positive
- Misclassification, Case II:
- w $\cdot \mathrm{f}<0$, so we predict -1
- True class is +1
- We want to modify w to w ' such that dot product w ' f is higher
- Update if we misclassify a true class +1 sample: $\mathbf{w '}^{\prime}=\mathbf{w}+\mathbf{f}$
- Proof: $w^{\prime} \cdot f=(w+f) \cdot f=(w \cdot f)+(f \cdot f)=(w \cdot f)+|f|^{2}$ Note that $|\mathrm{f}|^{2}$ is always positive
- Write update compactly as $w^{\prime}=w+y^{*} \cdot f$, where $y^{*}=$ true class

Examples: Perceptron

- Separable Case

Multiclass Decision Rule

- If we have multiple classes:
- A weight vector for each class:

$$
w_{y}
$$

- Score (activation) of a class y :

$$
w_{y} \cdot f(x)
$$

- Prediction highest score wins

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

Learning: Multiclass Perceptron

- Start with all weights $=0$
- Pick up training examples one by one
- Predict with current weights

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$
\begin{aligned}
& w_{y}=w_{y}-f(x) \\
& w_{y^{*}}=w_{y^{*}}+f(x)
\end{aligned}
$$

Example: Multiclass Perceptron

"win the vote"
"win the election"
"win the game"
$w_{S P O R T S}$

BIAS	$:$	1
win	$:$	0
game	$:$	0
vote	$:$	0
the	$:$	0
\ldots		

$w_{\text {POLITICS }}$

$w_{T E C H}$

BIAS	$:$	0
win	$:$	0
game	$:$	0
vote	$:$	0
the	$:$	0
\cdots		

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$
\text { mistakes }<\frac{k}{\delta^{2}}
$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
- Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
- Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get deterministic decisions?

- Perceptron scoring: $z=w \cdot f(x)$
- If $z=w \cdot f(x)$ positive \rightarrow classifier says: 1.0 probability this is class +1
- If $z=w \cdot f(x)$ negative \rightarrow classifier says: 0.0 probability this is class +1
- Step function

$$
H(z)= \begin{cases}1 & z>0 \\ 0 & z \leq 0\end{cases}
$$

- z = output of perceptron
$\mathrm{H}(\mathrm{z})=$ probability the class is +1 , according to the classifier

How to get probabilistic decisions?

- Perceptron scoring: $z=w \cdot f(x)$
- If $z=w \cdot f(x)$ very positive \rightarrow probability of class +1 should approach 1.0
- If $z=w \cdot f(x)$ very negative \rightarrow probability of class +1 should approach 0.0
- Sigmoid function

$$
\phi(z)=\frac{1}{1+e^{-z}}
$$

- z = output of perceptron
$\phi(z)=$ probability the class is +1 , according to the classifier

A 1D Example

$$
P(\operatorname{red} \mid x)=\frac{1}{1+e^{-w x}} \quad \begin{aligned}
& \text { where } \mathrm{w} \text { is some weight constant (1D vector) we have to learn } \\
& \text { (assume } \mathrm{w} \text { is positive in this example) }
\end{aligned}
$$

Best w?

- Recall maximum likelihood estimation: Choose the w value that maximizes the probability of the observed (training) data

$$
\begin{aligned}
\text { Likelihood } & =P(\text { training data } \mid w) \\
& =\prod_{i} P(\text { training datapoint } i \mid w) \\
& =\prod_{i} P\left(\text { point } x^{(i)} \text { has label } y^{(i)} \mid w\right) \\
& =\prod_{i} P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
\text { Log Likelihood } & =\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
\end{aligned}
$$

Best w?

- Recall maximum likelihood estimation: Choose the w value that maximizes the probability of the observed (training) data
$P\left(\right.$ point $x^{(i)}$ has label $\left.y^{(i)}=+1 \mid w\right)$
$=P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)$
$=\frac{1}{1+e^{-w \cdot x^{(i)}}}$

$$
\begin{aligned}
& P\left(\operatorname{point} x^{(i)} \text { has label } y^{(i)}=-1 \mid w\right) \\
= & P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right) \\
= & 1-\frac{1}{1+e^{-w \cdot x^{(i)}}}
\end{aligned}
$$

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
\begin{aligned}
& P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}} \\
& P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{aligned}
$$

= Logistic Regression

Separable Case: Deterministic Decision - Many Options

Separable Case: Probabilistic Decision - Clear Preference

Multiclass Logistic Regression

- Recall Perceptron:
- A weight vector for each class: w_{y}
- Score (activation) of a class y: $\quad w_{y} \cdot f(x)$
- Prediction highest score wins $\quad y=\arg \underset{y}{\max } w_{y} \cdot f(x)$

- How to make the scores into probabilities?

original activations
softmax activations

Best w?

- Recall maximum likelihood estimation: Choose the w value that maximizes the probability of the observed (training) data

$$
\begin{aligned}
\text { Likelihood } & =P(\text { training data } \mid w) \\
& =\prod_{i} P(\text { training datapoint } i \mid w) \\
& =\prod_{i} P\left(\text { point } x^{(i)} \text { has label } y^{(i)} \mid w\right) \\
& =\prod_{i} P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
\text { Log Likelihood } & =\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
\end{aligned}
$$

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
P\left(y^{(i)} \mid x^{(i)} ; w\right)=\frac{e^{w_{y}(i) \cdot f\left(x^{(i)}\right)}}{\sum_{y} e^{w_{y} \cdot f\left(x^{(i)}\right)}}
$$

Softmax with Different Bases

$$
P(\operatorname{red} \mid x)=\frac{e^{w_{\text {red }} \cdot x}}{e^{w_{\text {red }} \cdot x}+e^{w_{\text {blue }} \cdot x}}
$$

Softmax and Sigmoid

- Recall: Binary perceptron is a special case of multi-class perceptron
- Multi-class: Compute $w_{y} \cdot f(x)$ for each class y , pick class with the highest activation
- Binary case:

Let the weight vector of +1 be w (which we learn).
Let the weight vector of -1 always be 0 (constant).

- Binary classification as a multi-class problem:

Activation of negative class is always 0 .
If $w \cdot f$ is positive, then activation of $+1(w \cdot f)$ is higher than $-1(0)$. If $w \cdot f$ is negative, then activation of $-1(0)$ is higher than $+1(w \cdot f)$.

Softmax

$$
P(\operatorname{red} \mid x)=\frac{e^{w_{\text {red }} \cdot x}}{e^{w_{\text {red }} \cdot x}+e^{w_{\text {blue }} \cdot x}}
$$

Sigmoid
with $\mathrm{w}_{\mathrm{red}}=0$ becomes:

$$
P(\operatorname{red} \mid x)=\frac{1}{1+e^{-w x}}
$$

Next Lecture

- Optimization
- i.e., how do we solve:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

