
CS 188: Artificial Intelligence
Perceptrons and Logistic Regression

Spring 2023

University of California, Berkeley

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

+

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Some (Simplified) Biology

▪ Very loose inspiration: human neurons

Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1


f1

f2

f3

w1

w2

w3

>0?

Weights

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

Dot product positive means the positive class (spam)

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

Do these weights make sense for spam classification?

▪ A tuple like (2,3) can be interpreted two different ways:

▪ A tuple with more elements like (2, 7, -3, 6) is a point or vector in higher-
dimensional space (hard to visualize)

Review: Vectors

A point on a coordinate grid

2

3

A vector in space. Notice we are

not on a coordinate grid.

2

3

Review: Vectors

▪ Definition of dot product:

▪ a · b = |a| |b| cos(θ)

▪ θ is the angle between the vectors a and b

▪ Consequences of this definition:

▪ Vectors closer together
= “similar” vectors
= smaller angle θ between vectors
= larger (more positive) dot product

▪ If θ < 90°, then dot product is positive

▪ If θ = 90°, then dot product is zero

▪ If θ > 90°, then dot product is negative

θ

a · b large, positive

θ

a · b small, positive

θ

a · b zero

θ

a · b negative

Weights

▪ Binary case: compare features to a weight vector

▪ Learning: figure out the weight vector from examples

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

Dot product positive

means the positive class

Decision Rules

Binary Decision Rule

▪ In the space of feature vectors
▪ Examples are points

▪ Any weight vector is a hyperplane (divides space into two sides)

▪ One side corresponds to Y=+1, the other corresponds to Y=-1

▪ In the example:
▪ f · w > 0 when 4*free + 2*money > 0

f · w < 0 when 4*free + 2*money < 0
These equations correspond to two halves of the feature space

▪ f · w = 0 when 4*free + 2*money = 0
This equation corresponds to the decision boundary (a line in
2D, a hyperplane in higher dimensions)

free : 4

money : 2

0 1
0

1

2

free

m
o
n
e
y

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

▪ Start with weights = 0

▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector

Learning: Binary Perceptron

▪ Start with weights = 0

▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

Learning: Binary Perceptron

▪ Misclassification, Case I:
▪ w · f > 0, so we predict +1

▪ True class is -1

▪ We want to modify w to w' such that dot product w' · f is lower

▪ Update if we misclassify a true class -1 sample: w' = w – f

▪ Proof: w' · f = (w – f) · f = (w · f) – (f · f) = (w · f) – |f|2

Note that |f|2 is always positive

▪ Misclassification, Case II:
▪ w · f < 0, so we predict -1

▪ True class is +1

▪ We want to modify w to w' such that dot product w' · f is higher

▪ Update if we misclassify a true class +1 sample: w' = w + f

▪ Proof: w' · f = (w + f) · f = (w · f) + (f · f) = (w · f) + |f|2

Note that |f|2 is always positive

▪ Write update compactly as w' = w + y* · f, where y* = true class

Examples: Perceptron

▪ Separable Case

Multiclass Decision Rule

▪ If we have multiple classes:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

▪ Start with all weights = 0

▪ Pick up training examples one by one

▪ Predict with current weights

▪ If correct, no change!

▪ If wrong: lower score of wrong answer,
raise score of right answer

Example: Multiclass Perceptron

BIAS : 1

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

“win the vote”

“win the election”

“win the game”

Properties of Perceptrons

▪ Separability: true if some parameters get the training set
perfectly correct

▪ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

▪ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Problems with the Perceptron

▪ Noise: if the data isn’t separable,
weights might thrash
▪ Averaging weight vectors over time

can help (averaged perceptron)

▪ Mediocre generalization: finds a
“barely” separating solution

▪ Overtraining: test / held-out
accuracy usually rises, then falls
▪ Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7

0.1 | 0.9

0.7 | 0.3

0.9 | 0.1

How to get deterministic decisions?

▪ Perceptron scoring:

▪ If positive → classifier says: 1.0 probability this is class +1

▪ If negative → classifier says: 0.0 probability this is class +1

▪ Step function

▪ z = output of perceptron
H(z) = probability the class is +1, according to the classifier

0

1

H(z)

z

How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive → probability of class +1 should approach 1.0

▪ If very negative → probability of class +1 should approach 0.0

▪ Sigmoid function

▪ z = output of perceptron
= probability the class is +1, according to the classifier

A 1D Example

definitely blue

(x negative)

definitely red

(x positive)

not sure

(x near 0)

where w is some weight constant (1D vector) we have to learn
(assume w is positive in this example)

Best w?

▪ Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Best w?

▪ Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Best w?

▪ Maximum likelihood estimation:

with:

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Softmax with Different Bases

Softmax and Sigmoid

▪ Recall: Binary perceptron is a special case of multi-class perceptron

▪ Multi-class: Compute for each class y, pick class with the highest activation

▪ Binary case:
Let the weight vector of +1 be w (which we learn).
Let the weight vector of -1 always be 0 (constant).

▪ Binary classification as a multi-class problem:
Activation of negative class is always 0.
If w · f is positive, then activation of +1 (w · f) is higher than -1 (0).
If w · f is negative, then activation of -1 (0) is higher than +1 (w · f).

Softmax

with wred = 0 becomes:

Sigmoid

Next Lecture

▪ Optimization

▪ i.e., how do we solve:

