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Linear Classifiers



Feature Vectors

Hello,

Do you want free printr 

cartriges?  Why pay more 

when you can get them 

ABSOLUTELY FREE!  Just

# free      : 2

YOUR_NAME   : 0

MISSPELLED  : 2

FROM_FRIEND : 0

...

SPAM

or

+

PIXEL-7,12  : 1

PIXEL-7,13  : 0

...

NUM_LOOPS   : 1

...

“2”



Some (Simplified) Biology

▪ Very loose inspiration: human neurons



Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1


f1

f2

f3

w1

w2

w3

>0?



Weights

# free      : 2

YOUR_NAME   : 0

MISSPELLED  : 2

FROM_FRIEND : 0

...

# free      : 4

YOUR_NAME   :-1

MISSPELLED  : 1

FROM_FRIEND :-3

...

# free      : 0

YOUR_NAME   : 1

MISSPELLED  : 1

FROM_FRIEND : 1

...

Dot product            positive means the positive class (spam)

# free      : 4

YOUR_NAME   :-1

MISSPELLED  : 1

FROM_FRIEND :-3

...

Do these weights make sense for spam classification?



▪ A tuple like (2,3) can be interpreted two different ways:

▪ A tuple with more elements like (2, 7, -3, 6) is a point or vector in higher-
dimensional space (hard to visualize)

Review: Vectors

A point on a coordinate grid

2

3

A vector in space. Notice we are 

not on a coordinate grid.

2

3



Review: Vectors

▪ Definition of dot product:

▪ a · b = |a| |b| cos(θ)

▪ θ is the angle between the vectors a and b

▪ Consequences of this definition:

▪ Vectors closer together
= “similar” vectors
= smaller angle θ between vectors
= larger (more positive) dot product

▪ If θ < 90°, then dot product is positive

▪ If θ = 90°, then dot product is zero

▪ If θ > 90°, then dot product is negative

θ

a · b large, positive

θ

a · b small, positive

θ

a · b zero

θ

a · b negative



Weights

▪ Binary case: compare features to a weight vector

▪ Learning: figure out the weight vector from examples

# free      : 2

YOUR_NAME   : 0

MISSPELLED  : 2

FROM_FRIEND : 0

...

# free      : 4

YOUR_NAME   :-1

MISSPELLED  : 1

FROM_FRIEND :-3

...

# free      : 0

YOUR_NAME   : 1

MISSPELLED  : 1

FROM_FRIEND : 1

...

Dot product            positive 

means the positive class



Decision Rules



Binary Decision Rule

▪ In the space of feature vectors
▪ Examples are points

▪ Any weight vector is a hyperplane (divides space into two sides)

▪ One side corresponds to Y=+1, the other corresponds to Y=-1

▪ In the example:
▪ f · w > 0 when 4*free + 2*money > 0

f · w < 0 when 4*free + 2*money < 0
These equations correspond to two halves of the feature space

▪ f · w = 0 when 4*free + 2*money = 0
This equation corresponds to the decision boundary (a line in 
2D, a hyperplane in higher dimensions)

free  :  4

money :  2

0 1
0

1

2

free

m
o
n
e
y

+1 = SPAM

-1 = HAM



Weight Updates



Learning: Binary Perceptron

▪ Start with weights = 0

▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector



Learning: Binary Perceptron

▪ Start with weights = 0

▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector by 
adding or subtracting the feature 
vector. Subtract if y* is -1.



Learning: Binary Perceptron

▪ Misclassification, Case I:
▪ w · f > 0, so we predict +1

▪ True class is -1

▪ We want to modify w to w' such that dot product w' · f is lower

▪ Update if we misclassify a true class -1 sample:  w' = w – f

▪ Proof: w' · f = (w – f) · f = (w · f) – (f · f) = (w · f) – |f|2

Note that |f|2 is always positive

▪ Misclassification, Case II:
▪ w · f < 0, so we predict -1

▪ True class is +1

▪ We want to modify w to w' such that dot product w' · f is higher

▪ Update if we misclassify a true class +1 sample:  w' = w + f

▪ Proof: w' · f = (w + f) · f = (w · f) + (f · f) = (w · f) + |f|2

Note that |f|2 is always positive

▪ Write update compactly as w' = w + y* · f, where y* = true class



Examples: Perceptron

▪ Separable Case



Multiclass Decision Rule

▪ If we have multiple classes:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

▪ Start with all weights = 0

▪ Pick up training examples one by one

▪ Predict with current weights

▪ If correct, no change!

▪ If wrong: lower score of wrong answer, 
raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1

win   : 0

game  : 0 

vote  : 0 

the   : 0  

...

BIAS  : 0  

win   : 0 

game  : 0 

vote  : 0 

the   : 0  

...

BIAS  : 0 

win   : 0 

game  : 0 

vote  : 0 

the   : 0  

...

“win the vote”

“win the election”

“win the game”



Properties of Perceptrons

▪ Separability: true if some parameters get the training set 
perfectly correct

▪ Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

▪ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



Problems with the Perceptron

▪ Noise: if the data isn’t separable, 
weights might thrash
▪ Averaging weight vectors over time 

can help (averaged perceptron)

▪ Mediocre generalization: finds a 
“barely” separating solution

▪ Overtraining: test / held-out 
accuracy usually rises, then falls
▪ Overtraining is a kind of overfitting



Improving the Perceptron



Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7

0.1 | 0.9

0.7 | 0.3

0.9 | 0.1



How to get deterministic decisions?

▪ Perceptron scoring:

▪ If positive → classifier says: 1.0 probability this is class +1

▪ If  negative → classifier says: 0.0 probability this is class +1

▪ Step function

▪ z = output of perceptron
H(z) = probability the class is +1, according to the classifier

0

1

H(z)

z



How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive → probability of class +1 should approach 1.0

▪ If  very negative → probability of class +1 should approach 0.0

▪ Sigmoid function

▪ z = output of perceptron
= probability the class is +1, according to the classifier



A 1D Example

definitely blue

(x negative)

definitely red

(x positive)

not sure

(x near 0)

where w is some weight constant (1D vector) we have to learn
(assume w is positive in this example)



Best w? 

▪ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

▪ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

▪ Maximum likelihood estimation:

with:

= Logistic Regression



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



Softmax with Different Bases



Softmax and Sigmoid

▪ Recall: Binary perceptron is a special case of multi-class perceptron

▪ Multi-class: Compute                  for each class y, pick class with the highest activation

▪ Binary case:
Let the weight vector of +1 be w (which we learn). 
Let the weight vector of -1 always be 0 (constant).

▪ Binary classification as a multi-class problem:
Activation of negative class is always 0.
If w · f is positive, then activation of +1 (w · f) is higher than -1 (0).
If w · f is negative, then activation of -1 (0) is higher than +1 (w · f).

Softmax

with wred = 0 becomes:

Sigmoid



Next Lecture

▪ Optimization

▪ i.e., how do we solve:


