Review: Perceptron

I wyxy +wexg +wzrs >0

Y = < .
0 otherwise

\

Properties of Perceptrons

. . . Separable
= Separability: true if some parameters get the training set
perfectly correct + .
- vy,
= Convergence: if the training is separable, perceptron will - +
eventually converge (binary case) -

"= Mistake Bound: the maximum number of mistakes (binary

case) related to the margin or degree of separability Non-Separable

. k - +
mistakes < 5—2

Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

training
Overtraining: test / held-out >
accuracy usually rises, then falls o
= Qvertraining is a kind of overfitting § test
@ held-out

iterations

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

T 0.9] 0.1
0.7] 0.3

4t 0.5] 0.5
35} 0.3] 0.7
!
25}
2L
15}

How to get deterministic decisions?

Perceptron scoring: z = w - f(x)
If z=w- f(x) positive 2 classifier says: 1.0 probability this is class +1
If z=w - f(x) negative = classifier says: 0.0 probability this is class +1

Step function i)

(T
1 z2>0

B =190 . <o

\

0
z = output of perceptron

H(z) = probability the class is +1, according to the classifier

How to get probabilistic decisions?

Perceptron scoring: z = w - f(x)
If z=w- f(x) very positive = probability of class +1 should approach 1.0
If z=w - f(x) very negative = probability of class +1 should approach 0.0

Sigmoid function)= /'

z = output of perceptron
¢(z) = probability the class is +1, according to the classifier

Probabilistic Decisions: Example

1 where w is some weight constant (vector) we have to learn,
1+ ewz and wx is the dot product of w and x

= Supposew =[-3,4,2]and x =11, 2, 0]
= What label will be selected if we classify deterministically?
" wx=-34+8+0=5
" 5is positive, so the classifier guesses the positive label
= What are the probabilities of each label if we classify probabilistically?

= 1/(1+e>)=0.9933 probability of positive label
" 1-0.9933 =0.0067 probability of negative label

A 1D Example

P(red\:l:) _ 1 where w is some weight constant (1D vector) we have to learn
14 e~wx (assume w is positive in this example)
P(red|z)

a LQ i
S|
[

= almost 1.0

)
=
Ry
|
1
|
I
almost 0.0 :
S 1
@ o O o—0 0 0 060 060 6 O =
\ J \) \) L
Y Y Y
definitely blue not sure definitely red

(x negative) (x near 0) (x positive)

Best w?

= Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Likelihood = P(training data|w)
= H P(training datapoint i | w)

1

— H P(point 29 has label y'¥|w)

= [P12 w)

Log Likelihood = Z log Py]2 w)

Best w?

= Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

P(point z'¥ has label 4 = 4+1 | w) P(point ¥ has label 4V = —1 | w)
— P(y(i) = +1 | :13<i);w) — P(y(i) = —1| :U(i);w)
1 _ 4 1

1 + e—w-aj(i) o 1 + e—w-a:(i)

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

. . 1
| () — 1)y

1

P(y" = =1z w) = 1 | & o—w @)

= Logistic Regression

Logistic Regression Example

» What function are we trying to maximize for this training data?

* Data point [2, 1] is class +1
+

" Data point [0, —2] is class +1

" Data point [-1, —1] is class -1 t

w

max [l(w) = max ZlogP(y(i)\x(i);w)

Py = +1]2";w) = | & o—w /(@)

1

Logistic Regression Example

» What function are we trying to maximize for this training data?

= Data point
= Data point
= Data point

argmax

w

2, 1] is class +1
0, —2] is class +1

—1, —1] is class —1

loo
[Ob (1—1—6)

1 oo
_(2‘11'1 +‘ll"2) + 05 1 + €

+

Separable Case: Deterministic Decision — Many Options

Sr 5
45F
451 45}
4t
i 4 + +
395+
35+ 35l
3l
3r 3 +
29
2.5"' 25_
2l
2l
2
isl O O
1.9 F 15k
1tk
1tk
1
asl O O
U.S' 05_
(-
0

Separable Case: Probabilistic Decision — Clear Preference

0.7 | 0.3 S
0.5 | 0.5

.3]0.7

. T L T L T LI T LI T 1
()] -t ()] (] o (3] o EEN (4] o
T T T T T T T T T 1

° |

Multiclass Logistic Regression

w1y - f biggest
= Recall Perceptron: 0
= A weight vector for each class: UJy
= Score (activation) of a class y: Wy - f(:l?) w3
wo
= Prediction highest scorewins ¢y = arg max Wy - f(g;) ws - f w3 - f
Yy biggest biggest
" How to make the scores into probabilities?
Z Z Z
el e~? e~

Z1,22,23 7 s y y

€%l + €72 + €73 efl - e*2 ye*s el +e*2 + €73

\ J \)
| |

original activations softmax activations

Multi-Class Probabilistic Decisions: Example

Z1 Z9 Z3

e e e
€51 + %2 4 %3 %1 + e%2 4 %3 e¥1 + e¥2 + %3
= Supposew,=1[-3,4,2],w,=[(2,2,7],w;=[0,-1,0],and x =11, 2, 0]

= What label will be selected if we classify deterministically?

" w;-Xx=5,and w,-x =6, and wy-x =-2

Z1yR2y <3 7

" w,-X has the highest score, so the classifier guesses class 2

= What are the probabilities of each label if we classify probabilistically?
= Probability of class 1: e> / (e + e® + e72) = 0.2689
» Probability of class 2: e® / (e + e® + e72) =0.7310
* Probability of class 3: e / (e> + e® + e72) = 0.0002

Best w?

= Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Likelihood = P(training data|w)
= H P(training datapoint i | w)

1

— H P(point 29 has label y'¥|w)

= [P12 w)

Log Likelihood = Z log Py]2 w)

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

oWy (1) f(z)

e (4) 1-(9) . o)) —
with: P(y‘\"|x\"; w) Zyewy‘f(x(i))

= Multi-Class Logistic Regression

Multi-Class Logistic Regression Example

» What function are we trying to maximize for this training data?

= Data point
= Data point
= Data point

2, 1] is class Red

0, —2] is class Green

—1, —1] is class Blue

w

Py]z w) =

max [l(w) = max ZlogP(y(i)]az(i);w)

oWy () f(z(D)

Zy ewy'f(fc(i))

Multi-Class Logistic Regression Example

» What function are we trying to maximize for this training data?

= Data point
= Data point
= Data point

argmax
w

2, 1] is class Red

0, —2] is class Green

—1, —1] is class Blue

2 w + w o
log T
eZTTT 0D {201 T 02 2

—2

e
+10g (8_2“‘24-6_2“724—6_2

— W —W:
e 1 2

i +10g (e_”'l_”'l} fe~ W1 TW2 4o

o

Log probability of [2, 1] being red

Log probability of [0,—2] being green

Log probability of [-1, —1] being blue

Softmax with Different Bases

P(red|z) o5Wred

€5wred L _|_ 65wblue T

6100wred X

6100wred-:c + elOOwblue-aj

« —— looks like max, wy - @
ewred'x

ewred X + ewblue L

-@ O O 0 0 0 006 00 ¢ C

ewred L

P(red|z) =

ewred‘x —|— ewblue'x

Softmax and Sigmoid

= Recall: Binary perceptron is a special case of multi-class perceptron

= Multi-class: Compute wy - f(x) for each class y, pick class with the highest activation

= Binary case:
Let the weight vector of +1 be w (which we learn).
Let the weight vector of -1 always be 0 (constant).

" Binary classification as a multi-class problem:
Activation of negative class is always O.
If w - fis positive, then activation of +1 (w - f) is higher than -1 (0).
If w - fis negative, then activation of -1 (0) is higher than +1 (w - f).

Softmax Sigmoid

Wyed T . 1
¢ with wq = 0 becomes: P(red|z) = —wx
eWred X _|_ eWhblue T 1 _I_ ¢

P(red|z) =

Next Lecture

= Optimization

= j.e., how do we solve:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

CS 188: Artificial Intelligence

Optimization and Neural Nets

Spring 2023 --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Review: Derivatives and Gradients

= What is the derivative of the function ¢g(z) = z° +3?
dg
o ==
= What is the derivative of g(x) at x=57
dg
dz

20

lo—5 = 10

Review: Derivatives and Gradients

= What is the gradient of the function g(z,y) = T2y ?

= Recall: Gradient is a vector of partial derivatives with respect to
each variable

— ﬁ — p— —

oy 2xY
VQ: p—
o f 2
L Dy - R

= What is the derivative of g(x, y) at x=0.5, y=0.57

2(0.9)(0.5 0.5
VG|e=0.5,y=0.5 = ((0)5(2)) — | 0925

Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
" Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization

" Could evaluate g(wg 4+ h) and g(wy — h)

" Then step in best direction

dg(wo)

, , , wo + h) — glwg — h
= Or, evaluate derivative: D Z}ng}) 9o)% (wo —)

= Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: ¢g(wy,ws)

= Updates in vector notation:

= Updates:
dg
wl%w1+a*8w1(wlaw2) wew%-Oé*ng(w)
dg 09 ()

W2 <— W2 + (¢ *

Ows (wla UJZ) with: V,g(w) = [8(%1 (w)] = gradient

Gradient Ascent

= |dea:
= Start somewhere

= Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?*

max w+ A
A:A2+A2<e 9l)

First-Order Taylor Expansion:

Steepest Descent Direction:

-
: max A'a
Recall: AT -

Vg

Hence, solution: A =c¢
Vgl

69
g(w) g(w) 8w1 1 8w2 2

dg dg
max w) + ——A; + —=A
A:A24A2<e 9(w) Oow1 ! Ows 2

A=

~lall

Gradient direction = steepest direction!

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

= init q

= for iter =1, 2, ..

w — w~+ a*x Vg(w)

" «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

\ J

g(w)

= init W

= for iter =1, 2, ..

W — W+ Q * ZVlogP(y(i)]az(i);w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

" init w
= for iter =1, 2,

" pick random j

w < w + o« Viog P(yY)]z\9); w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" init w
= for iter =1, 2,

" pick random subset of training examples J

W — w + ok ZVlogP(y(j)]a:(j);w)
jedJ

How about computing all the derivatives?

= \We'll talk about that once we covered neural networks, which
are a generalization of logistic regression

Neural Network Architectures

Brand new untested slides ahead — apologies for any typos/mistakes!

Manual Feature Design vs. Deep Learning

o

B>
}y(
L
>

\/
X
‘V

</

==
e
R

o Manual feature design requires:
o Domain-specific expertise
o Domain-specific effort

o What if we could learn the features, too?
o Deep Learning

Review: Perceptron

I wyxy +wexg +wzrs >0

Y = < .
0 otherwise

\

Review: Perceptron with Sigmoid Activation

X W2=2—>¢4—>y

Yy = o(wyr1 + wors + w3x3)
1
o 1 + e —(wiz1+woxotwsxs)

2-Layer, 2-Neuron Neural Network

%\

2

1S

/

2-Layer, 2-Neuron Neural Network

intermediate output h;

W1

Wi1
X, W31 Z
W3q
X Wi
W»)
)3
X3 W32

/1,,/

intermediate output hy = @(wy1x1 + wor s + wW313)

1
o 1+ e—(wiiz1 w2 ratwsis)

2-Layer, 2-Neuron Neural Network

intermediate output h;

>, ~=

intermediate output h,

intermediate output ho = @(wi2x1 + Wosxs + wW32x3)
1

14+ e~ (wigw1+wooxo+wszaxs)

2-Layer, 2-Neuron Neural Network

Wi1
X, W31
W31
X5 Wi
W»)
X3 W3,

2.

——t=

y = ¢(wihy + wohs)

1

1+ o (wihn fwzhy)

intermediate output h;

W1

W,

intermediate output h,

2-Layer, 2-Neuron Neural Network

W1
intermediate output h
W71 2 —p 1
X1 Wi
W33
3 et
X, Wi, W,
W7o
2 /1/- intermediate output h
X3 Wgz—; P 2

y = ¢(wihy + wohs)

= ¢(w1p(wi1x1 + war e + wa1x3) + wad(wi2xy + Woors + Wa2x3))

2-Layer, 2-Neuron Neural Network

y = ¢(wihy + wohs)
.

(wig(wi1ry + worxe + w313) + Wwad(wWi2x1 + Wa2Ts + W32x3))

The same equation, formatted with matrices:

w11 Wi2
O [Ty To I3 } Wo1 W99
w31 W32

= ([W11 + W21 + W31xr3 W12 + W29 + W32T3 J)
— [hi ho }

w9

¢ ([hi ha } [o]) = ¢ (w1hy +wahs) =y

The same equation, formatted more compactly by introducing variables representing each matrix:

(p(ffl? X le ayer 1) — I 1l (D (] X ‘171 ayer 2) — Y

2-Layer, 2-Neuron Neural Network

O(x X Wiayer 1) = h

TN

Shape (1, 3). Shape (3, 2). Shape (1, 2).
Input feature vector. Weights to be learned. Outputs of layer 1,
inputs to layer 2.

¢ (h X Wi ayer 2) =Y

7N

Shape (1, 2). Shape (2, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned. Output of network.
inputs to layer 2.

2-Layer, 3-Neuron Neural Network

2-Layer, 3-Neuron Neural Network

[wi1 w12 w13 —‘
Q) [I i) xIr3 } w21 w9 Wwa3
{ w31 W32 W33 J

= O ([W11T1 + Wo1T2 + W31XT3 Wi12T1 + WXy + W32XT3 W13T1 + W32 + W33T3])

}Ll }LQ]l{; }

w1
& [hi hs hs] wWa = ¢ (wrhy + waho + w3hsz) =y
ws

2-Layer, 3-Neuron Neural Network

O(x X Wiayer 1) = h

TN

Shape (1, 3). Shape (3, 3). Shape (1, 3).
Input feature vector. Weights to be learned Outputs of layer 1,
inputs to layer 2.

¢ (h X Wi ayer 2) =Y

RN

Shape (1, 3). Shape (3, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned. Output of network.
inputs to layer 2.

Generalize: Number of hidden neurons

(
!
r
¥
s
!

Wan Z -

The hidden layer doesn’t necessarily need to have 3 neurons; it could have any arbitrary number n neurons.

Generalize: Number of hidden neurons

f
J

O(x X Wiayer 1) = h

TN

Shape (1, 3). Shape (3, n). Shape (1, n).
Input feature vector. Weights to be learned Outputs of layer 1,
inputs to layer 2.

¢ (h X Wi ayer 2) =Y

RN

Shape (1, n). Shape (n, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned. Output of network.
inputs to layer 2.

The hidden layer doesn’t necessarily need to have 3 neurons; it could have any arbitrary number n neurons.

Generalize: Number of input features

X3 ‘ Wdim(x)
. Win
. W)

W3,

Xdim(x)
2 ™
Wdim(x)n

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.

Generalize: Number of input features

O(x X Wiayer 1) = h

N

Shape (1, dim(x)). Shape (dim(x), n). Shape (1, n).
Input feature vector. Weights to be learned Outputs of layer 1,
inputs to layer 2.

¢ (h X Wi ayer 2) =Y

RN

Shape (1, n). Shape (n, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned. Output of network.
inputs to layer 2.

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.

Generalize: Number of outputs

W11
X1 W31

W3

X
2 ‘ Wdim(x]

X3 “

. Wln

[] W2
W3n

Xdim(x)
N

2

The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.

Generalize: Number of input features

O(x X Wiayer 1) = h

TN

Shape (1, dim(x)). Shape (dim(x), n). Shape (1, n).
Input feature vector. Weights to be learned Outputs of layer 1,
inputs to layer 2.

¢ (h X Wi ayer 2) =Y

TN

Shape (1, n). Shape (n, dim(y)). Shape (1, dim(y)).

Outputs of layer 1, Weights to be learned. Output of network.
inputs to layer 2.

The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.

Generalized 2-Layer Neural Network

@<'H‘_E x W layer 1) =h Layer 1 has weight matrix with shape (dim(x), n).
These are the weights for n neurons, each taking
[dim(x) features as input.
Shape (1, dim(x)). Shape (dim(x), n). ghape (1, ?)I . This transforms a dim(x)-dimensional input
Input feature vector. Weights to be learned utputs of layer 1, vector into an n-dimensional output vector.

inputs to layer 2.

¢ (h X I"'I’ﬁlaycr 2) — Y
Layer 2 has weight matrix with shape (n, dim(y)).

These are the weights for dim(y) neurons, each
\ taking n features as input.

Shape (1, n). Shape (n, dim(y)). Shape (1, dim(y)). This transforms an n-dimensional input vector

Outputs of layer 1, \yeights to be learned. Output of network. into a dim(y)-dimensional output vector.
inputs to layer 2.

Big idea: The shape of a weight matrix is determined by the dimensions of the input and output of that layer.

3-Layer, 3-Neuron Neural Network

3-Layer, 3-Neuron Neural Network

= Layer1:

x has shape (1, 3). Input vector, 3-dimensional.

W\ayer 1 has shape (3, 3). Weights for 3 neurons, each taking in
a 3-dimensional input vector.

hiayer 1 has shape (1, 3). Outputs of the 3 neurons at this layer.

= Layer 2:

hiayer 1 has shape (1, 3). Outputs of the 3 neurons from the
previous layer.

Wiaver 2 has shape (3, 3). Weights for 3 new neurons, each
taking in the 3 previous perceptron outputs.

hiayer 2 has shape (1, 3). Outputs of the 3 new neurons at this
layer.

= Layer 3:

hiayer 2 has shape (1, 3). Outputs from the previous layer.

W\,ver 3 has shape (3, 1). Weights for 1 final neuron, taking in
the 3 previous perceptron outputs.

y has shape (1, 1). Output of the final neuron.

»y

qb(ﬂﬁ X Wlaycr 1) — hlayor 1
¢(hlamy01‘ 1 X Wlaycr 2) — hlayer 2
gb(hlaycr 2 X Wlaycr 3) — Y

Generalized 3-Layer Neural Network

Layer 1:
= x has shape (1, dim(x))
" Wi,yer1 has shape (dim(x), dim(L1))
hiayer 1 has shape (1, dim(L1))
Layer 2:
hiayer 1 has shape (1, dim(L1))
" W,,er2 has shape (dim(L1), dim(L2))
hiayer 2 has shape (1, dim(L2))
Layer 3:
hiayer 2 has shape (1, dim(L2))
" Wi,yer3 has shape (dim(L2), dim(y))
= vy hasshape (1, dim(y))

#y

> =t

¢($ X Wlaycr 1) — hlayer 1
Cb(hlaycr 1 X Wlaycr 2) — hlayor 2
¢(hlaly01‘ 2 X Wlayor 3) — Y

Multi-Layer Neural Network

> b= I g I =L

Note: Sometimes we
don’t apply the non-
linear function in the
last layer.

> —~t=

Multi-Layer Neural Network

" |nput to a layer: some dim(x)-dimensional input vector

= Qutput of a layer: some dim(y)-dimensional output vector
" dim(y)is the number of neurons in the layer (1 output per neuron)

" Process of converting input to output:
= Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.
The result has shape (1, dim(y)).
= Apply some non-linear function (e.g. sigmoid) to the result.
The result still has shape (1, dim(y)).

= Big idea: Chain layers together
" The input could come from a previous layer’s output
" The output could be used as the input to the next layer

Deep Neural Network

Z§1> zéZ)
Zél) z§2)
(1) (2)

2 (1) 2 (2)

k k—1.k
H=aQ oW

J

4 A"
2 zﬁOUT)
mn
Zén—l) 2;2
3 3
(OUT)——»
<3
. (n)
Zg((ni)l) ZK(n)
z (k o 1)) g = nonlinear activation function

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 : v - 11 — 5
0.8 ! g('(zz))v - 0.5 | 33, | 4| 3f§. ‘
0.6} 3|
0
0.4 2 |
0.2 } - g 1|
o . - . " .
5 0 5 5 0 5 5 0
1 e’ — eg™*
g(z)=1_+_e_Z g(z)=ez+e_z g(z)=max (0, z)
1 z>0
! - s ! _— g 2 / —)
g'(z)= g(z)(1-g(2)) g'(z)=1-g(2) g (2) {0, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Batch Sizes

W11
intermediate output hy;

W
X11 21 z -

W3g

7&#

X1 W1) Y1

W7o

> s .

X31 W3, intermediate output hy,

W1

intermediate output h;,

W
X1 21 z >

W3q

7T£>—>

X22 W) Y2

W7o

P — g .

X327 W3, intermediate output h,,

Batch Sizes

== intermediate output hy;
x

/wzv
-

== intermediate output hy;

== intermediate output hy,
\

/
|

== intermediate output hy,

v

A 4

= N B 7)

v
v

Yy — qf)("l.l.,FI/?.ll + 'l_l,»‘zh.lz)

= ¢(wi1d(wi1T11 + wo1x12 + w31T13) + wod(wWiox1] + WooT 1o + W32x13))
Yo = ¢(wihoy + wohos)

= p(wi (w11 Ty + Wo1 oy + W31 To3) + Wod (WX + WonToy + W3To3))

We’re not changing the architecture; we’re just running the 2-neuron, 2-layer network twice to classify 2 inputs.

Batch Sizes

Yyr = @ (11’1/711 + w zhlz)

= Q (l 1()(11‘ 111 + w9112 + Wy 111;)+112()(1112]11+1122112+U‘ 211;))
y2 = ¢(wiha1 + wahas)
o

= p(wd(w1T9) + Wo 1 Tog + W31 T03) + Wod(W19To + WosTog + W32T03))

Rewriting in matrix form:

A _ . w1 Wi2
y 11 T91 I3 ’ ,
@ ~ - ~ woaq W99
12 T9o9 TI39 ’ ,
w3p W32

Wi1T11 + W21 T + W31Tr31 W21 + W0l + W32T3]

= ¢
' W11T12 + W21 T99 + W31T32 W22 + WooT99 + W392T 39
hi1 ho
- his hoo
b h.,l 1 /7.,21 wn — b un Ilvll + w9 }7..21 - (751
= ¢

/7.,12 /7.,22 w9 un llvlg + w9 }7..22 . (VD)

Batch Sizes

O(x X Wiayer 1) = h

N

Shape (batch, dim(x)). Shape (dim(x), n). Shape (batch, n).
Input feature vector. Weights to be learned Outputs of layer 1,
inputs to layer 2.

(D (h X Irl ayer 2) — Y

N

Shape (batch, n). shape (n, dim(y)). Shape (batch, dim(y)).

Outputs of layer 1, \eights to be learned. Output of network.
inputs to layer 2.

Big idea: We can “stack” inputs together to classify multiple inputs at once. The result is multiple outputs “stacked” together.

Multi-Layer Network, with Batches

" |nput to a layer: batch different dim(x)-dimensional input vectors

= Qutput of a layer: batch different dim(y)-dimensional output vectors
" dim(y)is the number of neurons in the layer (1 output per neuron)

" Process of converting input to output:
= Multiply the (batch, dim(x)) input matrix with a (dim(x), dim(y)) weight vector.
The result has shape (batch, dim(y)).

= Apply some non-linear function (e.g. sigmoid) to the result.
The result still has shape (batch, dim(y)).

= Big idea: Stack inputs/outputs to batch them
= The multiplication by weights and non-linear function will be applied to each row
(data point in the batch) separately.

Training Neural Networks

AT

Training Neural Networks

= Step 1: For each input in the training (sub)set x, predict a classification y
using the current weights

O X Whayer 1) = h O(h X Whayer 2) = ¥
= Step 2: Compare predictions with the true y values, using a loss function
» Higher value of loss function = bad model
= Lower value of loss function = good model
= Example: zero-one loss: count the number of misclassified inputs
* Example: log loss (derived from maximum likelihood; more on this soon)
= Example: sum of squared errors (if you're solving a regression problem)

= Step 3: Use numerical method (e.g. gradient descent) to minimize loss
" |Loss is a function of the weights. Optimization goal: find weights that minimize loss

Log Loss Function

m Recall: loss function is a measure of how far off our model is

* Higher value of loss function = bad model
" Lower value of loss function = good model

" Log loss function for binary classification:
Log Loss = — » "y;log(pi) + (1 — y;) log(1 — p;)

» y.=The true class of the ith data point in the training dataset

* p. =The probability of positive class, predicted by our classifier

* Each data point contributes some loss. The total loss is the sum over all data points.
" Note: Log loss is a function of the weights

* Changing the weights changes the predictions p.. The y. do not change.

Log Loss Function

= |Log loss function for a single data point: —ylog(p) — (1 —y)log(1 — p)

= Casel: Trueclassisy=1
= Log loss function becomes just —log(p)

= |f classifier gives p near O:
The model was confident in guessing y=0
Bad model = high loss value

= |f classifier gives p near 1:
The model was confident in guessing y=1
Good model = low loss value

Log Loss Function

= |Log loss function for a single data point: —ylog(p) — (1 —y)log(1 — p)

= Casell: Trueclassisy=0
= Log loss function becomes just —log(1-p)

= |f classifier gives p near O:
The model was confident in guessing y=0
Good model = low loss value

= |f classifier gives p near 1:
The model was confident in guessing y=1
Bad model = high loss value

= Note: This equation uses y=0, not y=-1,
for the negative class

Log Loss Example

Log Loss = — Zyz log(p;) + (1 — y;) log(1 — p;)

Data point 1: True class y=1. We predicted p=0.1 probability it’s the positive class.
= |ntuitively: Our guess is bad. We should have guessed closer to p=1.
= This contributes —log(0.1) = 1 to the loss function.

Data point 2: True class y=0. We predicted p=0 probability it’s the positive class.
" |ntuitively: Our guess was perfect. We were certain it was y=0.
= This contributes —log(1.0) = 0 to our loss function.

Data point 3: True class y=1. We predicted 0.8 probability it’s the positive class.

" |ntuitively: Our guess was pretty good, but not perfect.
= This contributes —log(0.8) = 0.1 to the loss function.

Totalloss: 1+0+0.1=1.1

= Goal: Find the weights that lead to the probabilities that minimize this loss function

Optimization Procedure: Gradient Descent

" init W

= for iter =1, 2, ..
w <— w — aVLog Loss(w)
where

Log Loss = — Zyz log(p;) + (1 — ;) log(1 — p;)

and pi is computed by running the network on input x; and weights w

= (¢:learning rate --- tweaking parameter that needs to be
chosen carefully

Computing Gradients

How do we compute gradients of these loss functions?

= Repeated application of the chain rule:

f f(x) = g(h(z))
Then f'(z) = ¢ (h(z))h' (z)

—> Derivatives can be computed by following well-defined procedures

Automatic Differentiation

= Automatic differentiation software
= e.g. Theano, TensorFlow, PyTorch, Chainer
" Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

» This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

= Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

" Need to know this exists
" How this is done? -- outside of scope of CS188

Backpropagation®

Gradient of g(w1, w2, ws) = wilwz +ows3 at wy; =2, W, =3, Wy =2

Think of g as a composition of many functions

= Then, we can use the chain rule to compute the gradient

g=b+c
dg . Og _
B 1, e 1
b=axw,
dg 0g Ob d0g 0g 0Ob
— = — — =] = _— e —— . —_—
da 0bOa w2 Ows Ob Ows Lra=16
a=w,*
dg dg Oa 3
— — 3.4 —
Oow; Oa Owy 3 - dwy =96
C=5w;
dg 0g Oc 1.5 —

Properties of Neural Networks

Neural Networks Properties

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

" Practical considerations
= Can be seen as learning the features
" Large number of neurons

= Danger for overfitting

" (hence early stopping!)

Universal Function Approximation Theorem?®

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,

for any finite measure u, standard multilayer feedforward networks can approximate any
function in LP(u) (the space of all functions on R* such that [g« |f(z)[Pdu(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

" |n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of

weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem?®

Math. Control Signals Systems (1989) 2: 303-314

Mathematics of Control,
Signals, and Systems

© 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we that finite linear inations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well i by conti dforward neural with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural , Approximation, Compl

1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N
le ao(yjx + 6)), ()

where y; € R" and ;, § € R are fixed. (y" is the transpose of y so that y"x is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

© 1 as t— +oo,
-
° 0 as t— —oo.

Such functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if o is any continuous sigmoidal

* Date received: October 21, 1988. Date revised: February 17, 1989. This research was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FGO02-
85ER25001.

t Center for Research and Devel and De; of El
Engineering, University of Illinois, Urbana, Illinois 61801, U.S.A.

and Computer

303

ISULE0N0/91 $3.00 4 00
Copyright © 1991 Pergamon Press ple

Neural Networks. Vol. 4. pp.
Printed in the USA. All rig!

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KurT HORNIK
Technische Universitiit Wien. Vienna, Austria
(Received 30 January 1990; revised and accepred 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect o L'() per-
formance criteria, for arbitrary finite input environment measures i, provided only that sufficiently many hidden
units are available. If the activation function is continuous.. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and

its derivatives.

Keywords—Multilayer feedforward networks, Activati

on function, Universal approximation capabilities. Input

measure, L7(s) app . Uniform

1. INTRODUCTION

The approximation capabilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989), Gallant and White
(1988). Hecht-Nielsen (1989), Hornik, Stinchcombe,
and White (1989, 1990), Irie and Miyake (1988),
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

If we think of the network architecture as a rule
for computing values at / output units given values
at k input units, hence implementing a class of map-
pings from R* to R', we can ask how well arbitrary
mappings from R* to R' can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation
depends on how we measure closeness between func-
tions, which in turn varies significantly with the spe-
cific problem to be dealt with. In many applications,
it is necessary to have the network perform sinul-
taneously well on all input samples taken from some
compact input set X in R*. In this case, closeness is

Requests for reprints should be sent to Kurt Hornik, Institut
fir Statistik und Wahrscheinlichkeitstheorie, Technische Uni-
versitat Wien, Wiedner HauptstraBe 8-100107, A-1040 Wien. Aus.
tria.

pp . Sobolev spaces, Smooth approximation.
measured by the uniform distance between functions
on X, that is,

poalf. 8) = sup [f(x) - g(x)|
X

In other applications, we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure y, where u(R) < =,
In this case, closeness is measured by the L(u)
tances

plfo®) - [[170 ~ g duty | .

I = p < =, the most popular choice being p = 2,
corresponding to mean square error.

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-
plications, it is also necessary that the derivatives of
the approximating function i d by the net-
work closely resemble those of the function to be
approximated, up to some order. This issue was first
taken up in Hornik et al. (1990). who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arise in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series); for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, see Gallant and White
(1989).

All papers

certain approximation ca-

MULTILAYER FEEDFORWARD NETWORKS
WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

by

Moshe Leshno
Faculty of Management
Tel Aviv University
Tel Aviv, Israel 69978

and

Shimon Schocken
Leonard N. Stern School of Business
New York University
New York, NY 10003

September 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

‘Working Paper Series

STERN 1S-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation

Functions Can Approximate Any Function”

Summary of Key ldeas

= Optimize probability of label given input ~ max ll(w) = max ZlogP(y(i)\ﬂ?“);w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

"= Deep neural nets

= Last layer = still logistic regression

= Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed
= Universal function approximation theorem
= If neural net is large enough
= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data = early stopping!

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

Application: Computer Vision

Performance

ImageNet Error Rate 2010-2014

Traditional CV

79%

60%
o
1+
v

S 40%
W

20%

7%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV

79%

60%
e
2]
o«

S 40%
uj

20%

7%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leaming

79%
60%
2
[++]
(4
S 40%
W
20%
AlexNet
7%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

79%
60%
2
[++]
(4
S 40%
W
=}
20% &
i !
AlexNet . i@
7% "
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

79%
60%
2
[++]
(4
S 40%
W
=}
20% &
i !
AlexNet - i@
7% =
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Fun Neural Net Demo Site

" Demo-site:
= http://playground.tensorflow.org/

http://playground.tensorflow.org/

Next: More Neural Net Applications!

