
CS 188 Introduction to Artificial Intelligence
Spring 2023 Note 3

These lecture notes are heavily based on notes originally written by Nikhil Sharma.

Last updated: January 15, 2023

Informed Search
Uniform cost search is good because it’s both complete and optimal, but it can be fairly slow because it
expands in every direction from the start state while searching for a goal. If we have some notion of the
direction in which we should focus our search, we can significantly improve performance and "hone in" on
a goal much more quickly. This is exactly the focus of informed search.

Heuristics
Heuristics are the driving force that allow estimation of distance to goal states - they’re functions that take
in a state as input and output a corresponding estimate. The computation performed by such a function is
specific to the search problem being solved. For reasons that we’ll see in A* search, below, we usually want
heuristic functions to be a lower bound on this remaining distance to the goal, and so heuristics are typically
solutions to relaxed problems (where some of the constraints of the original problem have been removed).
Turning to our Pacman example, let’s consider the pathing problem described earlier. A common heuristic
that’s used to solve this problem is the Manhattan distance, which for two points (x1,y1) and (x2,y2) is
defined as follows:

Manhattan(x1,y1,x2,y2) = |x1− x2|+ |y1− y2|

The above visualization shows the relaxed problem that the Manhattan distance helps solve - assuming
Pacman desires to get to the bottom left corner of the maze, it computes the distance from Pacman’s current
location to Pacman’s desired location assuming a lack of walls in the maze. This distance is the exact goal
distance in the relaxed search problem, and correspondingly is the estimated goal distance in the actual
search problem. With heuristics, it becomes very easy to implement logic in our agent that enables them
to "prefer" expanding states that are estimated to be closer to goal states when deciding which action to
perform. This concept of preference is very powerful, and is utilized by the following two search algorithms
that implement heuristic functions: greedy search and A*.

CS 188, Spring 2023, Note 3 1

Greedy Search
• Description - Greedy search is a strategy for exploration that always selects the frontier node with the

lowest heuristic value for expansion, which corresponds to the state it believes is nearest to a goal.

• Frontier Representation - Greedy search operates identically to UCS, with a priority queue Frontier
Representation. The difference is that instead of using computed backward cost (the sum of edge
weights in the path to the state) to assign priority, greedy search uses estimated forward cost in the
form of heuristic values.

• Completeness and Optimality - Greedy search is not guaranteed to find a goal state if one exists, nor is
it optimal, particularly in cases where a very bad heuristic function is selected. It generally acts fairly
unpredictably from scenario to scenario, and can range from going straight to a goal state to acting
like a badly-guided DFS and exploring all the wrong areas.

(a) Greedy search on a good day :) (b) Greedy search on a bad day :(

CS 188, Spring 2023, Note 3 2

A* Search
• Description - A* search is a strategy for exploration that always selects the frontier node with the

lowest estimated total cost for expansion, where total cost is the entire cost from the start node to the
goal node.

• Frontier Representation - Just like greedy search and UCS, A* search also uses a priority queue to
represent its frontier. Again, the only difference is the method of priority selection. A* combines the
total backward cost (sum of edge weights in the path to the state) used by UCS with the estimated
forward cost (heuristic value) used by greedy search by adding these two values, effectively yielding
an estimated total cost from start to goal. Given that we want to minimize the total cost from start to
goal, this is an excellent choice.

• Completeness and Optimality - A* search is both complete and optimal, given an appropriate heuristic
(which we’ll cover in a minute). It’s a combination of the good from all the other search strategies
we’ve covered so far, incorporating the generally high speed of greedy search with the optimality and
completeness of UCS!

Admissibility and Consistency
Now that we’ve discussed heuristics and how they are applied in both greedy and A* search, let’s spend
some time discussing what constitutes a good heuristic. To do so, let’s first reformulate the methods used
for determining priority queue ordering in UCS, greedy search, and A* with the following definitions:

• g(n) - The function representing total backwards cost computed by UCS.

• h(n) - The heuristic value function, or estimated forward cost, used by greedy search.

• f (n) - The function representing estimated total cost, used by A* search. f (n) = g(n)+h(n).

Before attacking the question of what constitutes a "good" heuristic, we must first answer the question of
whether A* maintains its properties of completeness and optimality regardless of the heuristic function we
use. Indeed, it’s very easy to find heuristics that break these two coveted properties. As an example, consider
the heuristic function h(n) = 1−g(n). Regardless of the search problem, using this heuristic yields

f (n) = g(n)+h(n)

= g(n)+(1−g(n))

= 1

Hence, such a heuristic reduces A* search to BFS, where all edge costs are equivalent. As we’ve already
shown, BFS is not guaranteed to be optimal in the general case where edge weights are not constant.

The condition required for optimality when using A* tree search is known as admissibility. The admissi-
bility constraint states that the value estimated by an admissible heuristic is neither negative nor an overes-
timate. Defining h∗(n) as the true optimal forward cost to reach a goal state from a given node n, we can
formulate the admissibility constraint mathematically as follows:

∀n, 0≤ h(n)≤ h∗(n)

CS 188, Spring 2023, Note 3 3

Theorem. For a given search problem, if the admissibility constraint is satisfied by a heuristic function h,
using A* tree search with h on that search problem will yield an optimal solution.

Proof. Assume two reachable goal states are located in the search tree for a given search problem, an optimal
goal A and a suboptimal goal B. Some ancestor n of A (including perhaps A itself) must currently be on the
frontier, since A is reachable from the start state. We claim n will be selected for expansion before B, using
the following three statements:

1. g(A)< g(B). Because A is given to be optimal and B is given to be suboptimal, we can conclude that
A has a lower backwards cost to the start state than B.

2. h(A) = h(B) = 0, because we are given that our heuristic satisfies the admissibility constraint. Since
both A and B are both goal states, the true optimal cost to a goal state from A or B is simply h∗(n) = 0;
hence 0≤ h(n)≤ 0.

3. f (n)≤ f (A), because, through admissibility of h, f (n) = g(n)+h(n)≤ g(n)+h∗(n) = g(A) = f (A).
The total cost through node n is at most the true backward cost of A, which is also the total cost of A.

We can combine statements 1. and 2. to conclude that f (A)< f (B) as follows:

f (A) = g(A)+h(A) = g(A)< g(B) = g(B)+h(B) = f (B)

A simple consequence of combining the above derived inequality with statement 3. is the following:

f (n)≤ f (A)∧ f (A)< f (B) =⇒ f (n)< f (B)

Hence, we can conclude that n is expanded before B. Because we have proven this for arbitrary n, we can
conclude that all ancestors of A (including A itself) expand before B. 2

One problem we found above with tree search was that in some cases it could fail to ever find a solution,
getting stuck searching the same cycle in the state space graph infinitely. Even in situations where our
search technique doesn’t involve such an infinite loop, it’s often the case that we revisit the same node
multiple times because there’s multiple ways to get to that same node. This leads to exponentially more
work, and the natural solution is to simply keep track of which states you’ve already expanded, and never
expand them again. More explicitly, maintain a "reached" set of expanded nodes while utilizing your search
method of choice. Then, ensure that each node isn’t already in the set before expansion and add it to the
set after expansion if it’s not. Tree search with this added optimization is known as graph search1, and the
pseudocode for it is presented below:

1In other courses, such as CS70 and CS170, you may have been introduced to "trees" and "graphs" in the graph theory context.
Specifically, a tree being a type of graph that satisfies certain constraints (connected and acyclic). This is not the distinction between
tree search and graph search that we make in this course.

CS 188, Spring 2023, Note 3 4

function GRAPH-SEARCH(problem, frontier) return a solution or failure
reached← an empty set
frontier← INSERT(MAKE-NODE(INITIAL-STATE[problem]), frontier)
while not IS-EMPTY(frontier) do

node← POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
end if
if node.STATE is not in reached then

add node.STATE in reached
for each child-node in EXPAND(problem, node) do

frontier← INSERT(child-node, frontier)
end for

end if
end while

return failure

Note that in implementation, it’s critically important to store the reached set as a disjoint set and not a list.
Storing it as a list requires costs O(n) operations to check for membership, which eliminates the performance
improvement graph search is intended to provide. An additional caveat of graph search is that it tends to
ruin the optimality of A*, even under admissible heuristics. Consider the following simple state space graph
and corresponding search tree, annotated with weights and heuristic values:

In the above example, it’s clear that the optimal route is to follow S→ A→C→G, yielding a total path cost
of 1+1+3 = 5. The only other path to the goal, S→ B→C→G has a path cost of 1+2+3 = 6. However,
because the heuristic value of node A is so much larger than the heuristic value of node B, node C is first
expanded along the second, suboptimal path as a child of node B. It’s then placed into the "reached" set, and
so A* graph search fails to reexpand it when it visits it as a child of A, so it never finds the optimal solution.
Hence, to maintain optimality under A* graph search, we need an even stronger property than admissibility,
consistency. The central idea of consistency is that we enforce not only that a heuristic underestimates the
total distance to a goal from any given node, but also the cost/weight of each edge in the graph. The cost of
an edge as measured by the heuristic function is simply the difference in heuristic values for two connected

CS 188, Spring 2023, Note 3 5

nodes. Mathematically, the consistency constraint can be expressed as follows:

∀A,C h(A)−h(C)≤ cost(A,C)

Theorem. For a given search problem, if the consistency constraint is satisfied by a heuristic function h,
using A* graph search with h on that search problem will yield an optimal solution.

Proof. In order to prove the above theorem, we first prove that when running A* graph search with a
consistent heuristic, whenever we remove a node for expansion, we’ve found the optimal path to that node.

Using the consistency constraint, we can show that the values of f (n) for nodes along any plan are nonde-
creasing. Define two nodes, n and n′, where n′ is a child of n. Then:

f (n′) = g(n′)+h(n′)

= g(n)+ cost(n,n′)+h(n′)

≥ g(n)+h(n)

= f (n)

If for every parent-child pair (n,n′) along a path, f (n′) ≥ f (n), then it must be the case that the values of
f (n) are nondecreasing along that path. We can check that the above graph violates this rule between f (A)
and f (C). With this information, we can now show that whenever a node n is removed for expansion, its
optimal path has been found. Assume towards a contradiction that this is false - that when n is removed
from the frontier, the path found to n is suboptimal. This means that there must be some ancestor of n, n′′,
on the frontier that was never expanded but is on the optimal path to n. Contradiction! We’ve already shown
that values of f along a path are nondecreasing, and so n′′ would have been removed for expansion before
n.

All we have left to show to complete our proof is that an optimal goal A will always be removed for expansion
and returned before any suboptimal goal B. This is trivial, since h(A) = h(B) = 0, so

f (A) = g(A)< g(B) = f (B)

just as in our proof of optimality of A* tree search under the admissibility constraint. Hence, we can
conclude that A* graph search is optimal under a consistent heuristic. 2

A couple of important highlights from the discussion above before we proceed: for heuristics that are either
admissible/consistent to be valid, it must by definition be the case that h(G) = 0 for any goal state G. Ad-
ditionally, consistency is not just a stronger constraint than admissibility, consistency implies admissibility.
This stems simply from the fact that if no edge costs are overestimates (as guaranteed by consistency), the
total estimated cost from any node to a goal will also fail to be an overestimate.

Consider the following three-node network for an example of an admissible but inconsistent heuristic:

CS 188, Spring 2023, Note 3 6

The red dotted line corresponds to the total estimated goal distance. If h(A) = 4, then the heuristic is
admissible, as the distance from A to the goal is 4 ≥ h(A), and same for h(C) = 1 ≤ 3. However, the
heuristic cost from A to C is h(A)−h(C) = 4−1 = 3. Our heuristic estimates the cost of the edge between
A and C to be 3 while the true value is cost(A,C) = 1, a smaller value. Since h(A)− h(C) ≰ cost(A,C),
this heuristic is not consistent. Running the same computation for h(A) = 2, however, yields h(A)−h(C) =
2−1 = 1≤ cost(A,C). Thus, using h(A) = 2 makes our heuristic consistent.

Dominance
Now that we’ve established the properties of admissibility and consistency and their roles in maintaining
the optimality of A* search, we can return to our original problem of creating "good" heuristics, and how to
tell if one heuristic is better than another. The standard metric for this is that of dominance. If heuristic a is
dominant over heuristic b, then the estimated goal distance for a is greater than the estimated goal distance
for b for every node in the state space graph. Mathematically,

∀n : ha(n)≥ hb(n)

Dominance very intuitively captures the idea of one heuristic being better than another - if one admissi-
ble/consistent heuristic is dominant over another, it must be better because it will always more closely esti-
mate the distance to a goal from any given state. Additionally, the trivial heuristic is defined as h(n) = 0,
and using it reduces A* search to UCS. All admissible heuristics dominate the trivial heuristic. The trivial
heuristic is often incorporated at the base of a semi-lattice for a search problem, a dominance hierarchy of
which it is located at the bottom. Below is an example of a semi-lattice that incorporates various heuristics
ha,hb, and hc ranging from the trivial heuristic at the bottom to the exact goal distance at the top:

As a general rule, the max function applied to multiple admissible heuristics will also always be admissible.
This is simply a consequence of all values output by the heuristics for any given state being constrained by
the admissibility condition, 0≤ h(n)≤ h∗(n). The maximum of numbers in this range must also fall in the
same range. The same can be shown easily for multiple consistent heuristics as well. It’s common practice
to generate multiple admissible/consistent heuristics for any given search problem and compute the max
over the values output by them to generate a heuristic that dominates (and hence is better than) all of them
individually.

CS 188, Spring 2023, Note 3 7

Search: Summary
In this note, we discussed search problems and their components: a state space, a set of actions, a transition
function, an action cost, a start state and a goal state. The agent interacts with the environment through its
sensors and its actuators. The agent function describes what the agent does in all circumstances. Rationality
of the agent means that the agent seeks to maximize their expected utility. Finally, we define our task
environments using PEAS descriptions.

Regarding the search problems, they can be solved using a variety of search techniques, including but not
limited to the five we study in CS 188:

• Breadth-first Search

• Depth-first Search

• Uniform Cost Search

• Greedy Search

• A* Search

The first three search techniques listed above are examples of uninformed search, while the latter two are
examples of informed search which use heuristics to estimate goal distance and optimize performance.

We additionally made a distinction between tree search and graph search algorithms for the above tech-
niques.

CS 188, Spring 2023, Note 3 8

