
CS 188 Introduction to Artificial Intelligence
Spring 2023 Note 12

These lecture notes are heavily based on notes originally written by Nikhil Sharma.

Last updated: January 15, 2023

Policy Iteration
Value iteration can be quite slow. At each iteration, we must update the values of all |S| states (where |n|
refers to the cardinality operator), each of which requires iteration over all |A| actions as we compute the
Q-value for each action. The computation of each of these Q-values, in turn, requires iteration over each of
the |S| states again, leading to a poor runtime of O(|S|2|A|). Additionally, when all we want to determine
is the optimal policy for the MDP, value iteration tends to do a lot of overcomputation since the policy as
computed by policy extraction generally converges significantly faster than the values themselves. The fix
for these flaws is to use policy iteration as an alternative, an algorithm that maintains the optimality of value
iteration while providing significant performance gains. Policy iteration operates as follows:

1. Define an initial policy. This can be arbitrary, but policy iteration will converge faster the closer the
initial policy is to the eventual optimal policy.

2. Repeat the following until convergence:

• Evaluate the current policy with policy evaluation. For a policy π , policy evaluation means
computing Uπ(s) for all states s, where Uπ(s) is expected utility of starting in state s when
following π:

Uπ(s) = ∑
s′

T (s,π(s),s′)[R(s,π(s),s′)+ γUπ(s′)]

Define the policy at iteration i of policy iteration as πi. Since we are fixing a single action for
each state, we no longer need the max operator which effectively leaves us with a system of |S|
equations generated by the above rule. Each Uπi(s) can then be computed by simply solving
this system. Alternatively, we can also compute Uπi(s) by using the following update rule until
convergence, just like in value iteration:

Uπi
k+1(s)←∑

s′
T (s,πi(s),s′)[R(s,πi(s),s′)+ γUπi

k (s′)]

However, this second method is typically slower in practice.

• Once we’ve evaluated the current policy, use policy improvement to generate a better policy.
Policy improvement uses policy extraction on the values of states generated by policy evaluation
to generate this new and improved policy:

πi+1(s) = argmax
a

∑
s′

T (s,a,s′)[R(s,a,s′)+ γUπi(s′)]

If πi+1 = πi, the algorithm has converged, and we can conclude that πi+1 = πi = π∗.

CS 188, Spring 2023, Note 12 1

Let’s run through our racecar example one last time (getting tired of it yet?) to see if we get the same policy
using policy iteration as we did with value iteration. Recall that we were using a discount factor of γ = 0.5.

We start with an initial policy of Always go slow:

cool warm overheated
π0 slow slow −

Because terminal states have no outgoing actions, no policy can assign a value to one. Hence, it’s reasonable
to disregard the state overheated from consideration as we have done, and simply assign ∀i, Uπi(s) = 0 for
any terminal state s. The next step is to run a round of policy evaluation on π0:

Uπ0(cool) = 1 · [1+0.5 ·Uπ0(cool)]

Uπ0(warm) = 0.5 · [1+0.5 ·Uπ0(cool)]+0.5 · [1+0.5 ·Uπ0(warm)]

Solving this system of equations for Uπ0(cool) and Uπ0(warm) yields:

cool warm overheated
Uπ0 2 2 0

We can now run policy extraction with these values:

π1(cool) = argmax{slow : 1 · [1+0.5 ·2], f ast : 0.5 · [2+0.5 ·2]+0.5 · [2+0.5 ·2]}
= argmax{slow : 2, f ast : 3}
= f ast

π1(warm) = argmax{slow : 0.5 · [1+0.5 ·2]+0.5 · [1+0.5 ·2], f ast : 1 · [−10+0.5 ·0]}
= argmax{slow : 3, f ast :−10}
= slow

Running policy iteration for a second round yields π2(cool) = f ast and π2(warm) = slow. Since this is the
same policy as π1, we can conclude that π1 = π2 = π∗. Verify this for practice!

cool warm
π0 slow slow
π1 f ast slow
π2 f ast slow

CS 188, Spring 2023, Note 12 2

This example shows the true power of policy iteration: with only two iterations, we’ve already arrived at the
optimal policy for our racecar MDP! This is more than we can say for when we ran value iteration on the
same MDP, which was still several iterations from convergence after the two updates we performed.

Summary
The material presented above has much opportunity for confusion. We covered value iteration, policy iter-
ation, policy extraction, and policy evaluation, all of which look similar, using the Bellman equation with
subtle variation. Below is a summary of the purpose of each algorithm:

• Value iteration: Used for computing the optimal values of states, by iterative updates until conver-
gence.

• Policy evaluation: Used for computing the values of states under a specific policy.

• Policy extraction: Used for determining a policy given some state value function. If the state values
are optimal, this policy will be optimal. This method is used after running value iteration, to compute
an optimal policy from the optimal state values; or as a subroutine in policy iteration, to compute the
best policy for the currently estimated state values.

• Policy iteration: A technique that encapsulates both policy evaluation and policy extraction and is
used for iterative convergence to an optimal policy. It tends to outperform value iteration, by virtue of
the fact that policies usually converge much faster than the values of states.

CS 188, Spring 2023, Note 12 3

