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D-Separation
One useful question to ask about a set of random variables is whether or not one variable is independent from
another, or if one random variable is conditionally independent of another given a third random variable.
Bayes’ Nets representation of joint probability distributions gives us a way to quickly answer such questions
by inspecting the topological structure of the graph.

We already mentioned that a node is conditionally independent of all its ancestor nodes in the graph
given all of its parents.

We will present all three canonical cases of connected three-node two-edge Bayes’ Nets, or triples, and the
conditional independence relationships they express.

Causal Chains

Figure 1: Causal Chain with no observations. Figure 2: Causal Chain with Y observed.

Figure 1 is a configuration of three nodes known as a causal chain. It expresses the following representation
of the joint distribution over X , Y , and Z:

P(x,y,z) = P(z|y)P(y|x)P(x)

It’s important to note that X and Z are not guaranteed to be independent, as shown by the following coun-
terexample:

P(y|x) =

{
1 if x = y
0 else

P(z|y) =

{
1 if z = y
0 else

In this case, P(z|x) = 1 if x = z and 0 otherwise, so X and Z are not independent.

However, we can make the statement that X ⊥⊥ Z|Y , as in Figure 2. Recall that this conditional indepdence
means:

P(X |Z,Y ) = P(X |Y )
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We can prove this statement as follows:

P(X |Z,y) =
P(X ,Z,y)

P(Z,y)
=

P(Z|y)P(y|X)P(X)

∑x P(X ,y,Z)
=

P(Z|y)P(y|X)P(X)

P(Z|y)∑x P(y|x)P(x)

=
P(y|X)P(X)

∑x P(y|x)P(x)
=

P(y|X)P(X)

P(y)
= P(X |y)

An analogous proof can be used to show the same thing for the case where X has multiple parents. To
summarize, in the causal chain chain configuration, X ⊥⊥ Z|Y .
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Common Cause

Figure 3: Common Cause with no observations. Figure 4: Common Cause with Y observed.

Another possible configuration for a triple is the common cause. It expresses the following representation:

P(x,y,z) = P(x|y)P(z|y)P(y)

Just like with causal chain, we can show that X is not guaranteed to be independent of Z with the following
counterexample distribution:

P(x|y) =

{
1 if x = y
0 else

P(z|y) =

{
1 if z = y
0 else

Then P(x|z) = 1 if x = z and 0 otherwise, so X and Z are not independent.

But it is true that X ⊥⊥ Z|Y . That is, X and Z are independent if Y is observed as in Figure 4. We can show
this as follows:

P(X |Z,y) = P(X ,Z,y)
P(Z,y)

=
P(X |y)P(Z|y)P(y)

P(Z|y)P(y)
= P(X |y)

Common Effect
The final possible configuration for a triple is the common effect, as shown in the figures below.

Figure 5: Common Effect with no observations. Figure 6: Common Effect with Y observed.
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It expresses the representation:
P(x,y,z) = P(y|x,z)P(x)P(z)

In the configuration shown in Figure 5, X and Z are independent: X ⊥⊥ Z. However, they are not necessarily
independent when conditioned on Y (Figure 6). As an example, suppose all three are binary variables. X
and Z are true and false with equal probability:

P(X = true) = P(X = f alse) = 0.5

P(Z = true) = P(Z = f alse) = 0.5

and Y is determined by whether X and Z have the same value:

P(Y |X ,Z) =


1 if X = Z and Y = true
1 if X ̸= Z and Y = f alse
0 else

Then X and Z are independent if Y is unobserved. But if Y is observed, then knowing X will tell us the value
of Z, and vice-versa. So X and Z are not conditionally independent given Y .

Common Effect can be viewed as “opposite” to Causal Chains and Common Cause – X and Z are guaranteed
to be independent if Y is not conditioned on. But when conditioned on Y , X and Z may be dependent
depending on the specific probability values for P(Y |X ,Z)).

This same logic applies when conditioning on descendants of Y in the graph. If one of Y ’s descendant nodes
is observed, as in Figure 7, X and Z are not guaranteed to be independent.

Figure 7: Common Effect with child observations.
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General Case, and D-separation
We can use the previous three cases as building blocks to help us answer conditional independence questions
on an arbitrary Bayes’ Net with more than three nodes and two edges. We formulate the problem as follows:

Given a Bayes Net G, two nodes X and Y , and a (possibly empty) set of nodes {Z1, . . .Zk} that represent
observed variables, must the following statement be true: X ⊥⊥ Y |{Z1, . . . Zk}?

D-separation (directed separation) is a property of the structure of the Bayes Net graph that implies this
conditional independence relationship, and generalizes the cases we’ve seen above. If a set of variables
Z1, · · ·Zk d-separates X and Y , then X ⊥⊥ Y |{Z1, · · ·Zk} in all possible distributions that can be encoded by
the Bayes net.

We start with an algorithm that is based on a notion of reachability from node X to node Y . (Note: this
algorithm is not quite correct! We’ll see how to fix it in a moment.)

1. Shade all observed nodes {Z1, . . .Zk} in the graph.

2. If there exists an undirected path from X and Y that is not blocked by a shaded node, X and Y are
“connected”.

3. If X and Y are connected, they’re not conditionally independent given {Z1, . . .Zk}. Otherwise, they
are.

However, this algorithm only works if the Bayes’ Net has no Common Effect structure within the graph, be-
cause if it exists, then two nodes are “reachable” when the Y node in Common Effect is activated (observed).
To adjust for this, we arrive at the following d-separation algorithm:

1. Shade all observed nodes {Z1, . . . ,Zk} in the graph.

2. Enumerate all undirected paths from X to Y .

3. For each path:

(a) Decompose the path into triples (segments of 3 nodes).

(b) If all triples are active, this path is active and d-connects X to Y .

4. If no path d-connects X and Y , then X and Y are d-separated, so they are conditionally independent
given {Z1, . . . ,Zk}

Any path in a graph from X to Y can be decomposed into a set of 3 consecutive nodes and 2 edges - each
of which is called a triple. A triple is active or inactive depending on whether or not the middle node is
observed. If all triples in a path are active, then the path is active and d-connects X to Y , meaning X is
not guaranteed to be conditionally independent of Y given the observed nodes. If all paths from X to Y are
inactive, then X and Y are conditionally independent given the observed nodes.
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Active triples: We can enumerate all possibilities of active and inactive triples using the three canonical
graphs we presented below in Figure 8 and 9.

Figure 8: Active triples Figure 9: Inactive triples

Examples
Here are some examples of applying the d-separation algorithm:

This graph contains the common effect and causual
chain canonical graphs.

a) R ⊥⊥ B – Guaranteed

b) R ⊥⊥ B|T – Not guaranteed

c) R ⊥⊥ B|T ′ – Not guaranteed

d) R ⊥⊥ T ′|T – Guaranteed
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This graph contains combinations of all three canon-
ical graphs (can you list them all?).

a) L ⊥⊥ T ′|T – Guaranteed

b) L ⊥⊥ B – Guaranteed

c) L ⊥⊥ B|T – Not guaranteed

d) L ⊥⊥ B|T ′ – Not guaranteed

e) L ⊥⊥ B|T,R – Guaranteed

This graph contains combinations of all three canon-
ical graphs.

a) T ⊥⊥ D – Not guaranteed

b) T ⊥⊥ D|R – Guaranteed

c) T ⊥⊥ D|R,S – Not guaranteed
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