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Markov Models
In previous notes, we talked about Bayes’ nets and how they are a wonderful structure used for compactly
representing relationships between random variables. We’ll now cover a very intrinsically related structure
called a Markov model, which for the purposes of this course can be thought of as analogous to a chain-
like, infinite-length Bayes’ net. The running example we’ll be working with in this section is the day-to-day
fluctuations in weather patterns. Our weather model will be time-dependent (as are Markov models in
general), meaning we’ll have a separate random variable for the weather on each day. If we define Wi as the
random variable representing the weather on day i, the Markov model for our weather example would look
like this:

What information should we store about the random variables involved in our Markov model? To track
how our quantity under consideration (in this case, the weather) changes over time, we need to know both
it’s initial distribution at time t = 0 and some sort of transition model that characterizes the probability
of moving from one state to another between timesteps. The initial distribution of a Markov model is
enumerated by the probability table given by P(W0) and the transition model of transitioning from state i to
i+1 is given by P(Wi+1|Wi). Note that this transition model implies that the value of Wi+1 is conditionally
dependent only on the value of Wi. In other words, the weather at time t = i+ 1 satisfies the Markov
property or memoryless property, and is independent of the weather at all other timesteps besides t = i.

Using our Markov model for weather, if we wanted to reconstruct the joint between W0, W1, and W2 using
the chain rule, we would want:

P(W0,W1,W2) = P(W0)P(W1|W0)P(W2|W1,W0)

However, with our assumption that the Markov property holds true and W0 ⊥⊥W2|W1, the joint simplifies to:

P(W0,W1,W2) = P(W0)P(W1|W0)P(W2|W1)

And we have everything we need to calculate this from the Markov model. More generally, Markov models
make the following independence assumption at each timestep: Wi+1 ⊥⊥ {W0, ...,Wi−1}|Wi. This allows us
to reconstruct the joint distribution for the first n+1 variables via the chain rule as follows:

P(W0,W1, ...,Wn) = P(W0)P(W1|W0)P(W2|W1)...P(Wn|Wn−1) = P(W0)
n−1

∏
i=0

P(Wi+1|Wi)
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A final assumption that’s typically made in Markov models is that the transition model is stationary. In
other words, for all values of i (all timesteps), P(Wi+1|Wi) is identical. This allows us to represent a Markov
model with only two tables: one for P(W0) and one for P(Wi+1|Wi).

The Mini-Forward Algorithm
We now know how to compute the joint distribution across timesteps of a Markov model. However, this
doesn’t explicitly help us answer the question of the distribution of the weather on some given day t. Nat-
urally, we can compute the joint then marginalize (sum out) over all other variables, but this is typically
extremely inefficient, since if we have j variables each of which can take on d values, the size of the joint
distribution is O(d j). Instead, we’ll present a more efficient technique called the mini-forward algorithm.

Here’s how it works. By properties of marginalization, we know that

P(Wi+1) = ∑
wi

P(wi,Wi+1)

By the chain rule we can re-express this as follows:

P(Wi+1) = ∑
wi

P(Wi+1|wi)P(wi)

This equation should make some intuitive sense — to compute the distribution of the weather at timestep
i+1, we look at the probability distribution at timestep i given by P(Wi) and "advance" this model a timestep
with our transition model P(Wi+1|Wi). With this equation, we can iteratively compute the distribution of the
weather at any timestep of our choice by starting with our initial distribution P(W0) and using it to compute
P(W1), then in turn using P(W1) to compute P(W2), and so on. Let’s walk through an example, using the
following initial distribution and transition model:

W0 P(W0)

sun 0.8
rain 0.2

Wi+1 Wi P(Wi+1|Wi)

sun sun 0.6
rain sun 0.4
sun rain 0.1
rain rain 0.9

Using the mini-forward algorithm we can compute P(W1) as follows:

P(W1 = sun) = ∑
w0

P(W1 = sun|w0)P(w0)

= P(W1 = sun|W0 = sun)P(W0 = sun)+P(W1 = sun|W0 = rain)P(W0 = rain)

= 0.6 ·0.8+0.1 ·0.2 = 0.5

P(W1 = rain) = P(W1 = rain|w0)P(w0)

= P(W1 = rain|W0 = sun)P(W0 = sun)+P(W1 = rain|W0 = rain)P(W0 = rain)

= 0.4 ·0.8+0.9 ·0.2 = 0.5

Hence our distribution for P(W1) is

W1 P(W1)

sun 0.5
rain 0.5
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Notably, the probability that it will be sunny has decreased from 80% at time t = 0 to only 50% at time t = 1.
This is a direct result of our transition model, which favors transitioning to rainy days over sunny days. This
gives rise to a natural follow-up question: does the probability of being in a state at a given timestep ever
converge? We’ll address the answer to this problem in the following section.

Stationary Distribution
To solve the problem stated above, we must compute the stationary distribution of the weather. As the
name suggests, the stationary distribution is one that remains the same after the passage of time, i.e.

P(Wt+1) = P(Wt)

We can compute these converged probabilities of being in a given state by combining the above equivalence
with the same equation used by the mini-forward algorithm:

P(Wt+1) = P(Wt) = ∑
wt

P(Wt+1|wt)P(wt)

For our weather example, this gives us the following two equations:

P(Wt = sun) = P(Wt+1 = sun|Wt = sun)P(Wt = sun)+P(Wt+1 = sun|Wt = rain)P(Wt = rain)

= 0.6 ·P(Wt = sun)+0.1 ·P(Wt = rain)

P(Wt = rain) = P(Wt+1 = rain|Wt = sun)P(Wt = sun)+P(Wt+1 = rain|Wt = rain)P(Wt = rain)

= 0.4 ·P(Wt = sun)+0.9 ·P(Wt = rain)

We now have exactly what we need to solve for the stationary distribution, a system of 2 equations in 2
unknowns! We can get a third equation by using the fact that P(Wt) is a probability distribution and so must
sum to 1:

P(Wt = sun) = 0.6 ·P(Wt = sun)+0.1 ·P(Wt = rain)

P(Wt = rain) = 0.4 ·P(Wt = sun)+0.9 ·P(Wt = rain)

1 = P(Wt = sun)+P(Wt = rain)

Solving this system of equations yields P(Wt = sun) = 0.2 and P(Wt = rain) = 0.8. Hence the table for our
stationary distribution, which we’ll henceforth denote as P(W∞), is the following:

W∞ P(W∞)

sun 0.2
rain 0.8

To verify this result, let’s apply the transition model to the stationary distribution:

P(W∞+1 = sun) = P(W∞+1 = sun|W∞ = sun)P(W∞ = sun)+P(W∞+1 = sun|W∞ = rain)P(W∞ = rain)

= 0.6 ·0.2+0.1 ·0.8 = 0.2

P(W∞+1 = rain) = P(W∞+1 = rain|W∞ = sun)P(W∞ = sun)+P(W∞+1 = rain|W∞ = rain)P(W∞ = rain)

= 0.4 ·0.2+0.9 ·0.8 = 0.8

As expected, P(W∞+1) = P(W∞). In general, if Wt had a domain of size k, the equivalence

P(Wt) = ∑
wt

P(Wt+1|wt)P(wt)

yields a system of k equations, which we can use to solve for the stationary distribution.
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