CS 188 Introduction to Artificial Intelligence
 Spring 2023

These lecture notes are heavily based on notes originally written by Nikhil Sharma.
Last updated: April 27, 2023 (re-numbered Notes 19-26 to align with lectures)

Utilities

Throughout our discussion of rational agents, the concept of utility came up repeatedly. In games, for example, Utility values are generally hard-wired into the game, and agents use these utility values to select an action. We'll now discuss what's necessary in order to generate a viable utility function.
Rational agents must follow the principle of maximum utility - they must always select the action that maximizes their expected utility. However, obeying this principle only benefits agents that have rational preferences. To construct an example of irrational preferences, say there exist 3 objects, A, B, and C, and our agent is currently in possession of A. Say our agent has the following set of irrational preferences:

- Our agent prefers B to A plus $\$ 1$
- Our agent prefers C to B plus $\$ 1$
- Our agent prefers A to C plus $\$ 1$

A malicious agent in possession of B and C can trade our agent B for A plus a dollar, then C for B plus a dollar, then A again for C plus a dollar. Our agent has just lost $\$ 3$ for nothing! In this way, our agent can be forced to give up all of its money in an endless and nightmarish cycle.
Let's now properly define the mathematical language of preferences:

- If an agent prefers receiving a prize A to receiving a prize B, this is written $A \succ B$
- If an agent is indifferent between receiving A or B, this is written as $A \sim B$
- A lottery is a situation with different prizes resulting with different probabilities. To denote lottery where A is received with probability p and B is received with probability $(1-p)$, we write

$$
L=[p, A ;(1-p), B]
$$

In order for a set of preferences to be rational, they must follow the five Axioms of Rationality:

- Orderability: $\quad(A \succ B) \vee(B \succ A) \vee(A \sim B)$

A rational agent must either prefer one of A or B, or be indifferent between the two.

- Transitivity: $\quad(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$

If a rational agent prefers A to B and B to C, then it prefers A to C.

- Continuity: $\quad A \succ B \succ C \Rightarrow \exists p[p, A ;(1-p), C] \sim B$

If a rational agent prefers A to B but B to C, then it's possible to construct a lottery L between A and C such that the agent is indifferent between L and B with appropriate selection of p.

- Substitutability: $\quad A \sim B \Rightarrow[p, A ;(1-p), C] \sim[p, B ;(1-p), C]$

A rational agent indifferent between two prizes A and B is also indifferent between any two lotteries which only differ in substitutions of A for B or B for A.

- Monotonicity: $\quad A \succ B \Rightarrow(p \geq q \Leftrightarrow[p, A ;(1-p), B] \succeq[q, A ;(1-q), B]$ If a rational agent prefers A over B, then given a choice between lotteries involving only A and B, the agent prefers the lottery assigning the highest probability to A.

If all five axioms are satisfied by an agent, then it's guaranteed that the agent's behavior is describable as a maximization of expected utility. More specifically, this implies that there exists a real-valued utility function U that when implemented will assign greater utilities to preferred prizes, and also that the utility of a lottery is the expected value of the utility of the prize resulting from the lottery. These two statements can be summarized in two concise mathematical equivalences:

$$
\begin{align*}
U(A) \geq U(B) & \Leftrightarrow A \succeq B \tag{1}\\
U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right) & =\sum_{i} p_{i} U\left(S_{i}\right) \tag{2}
\end{align*}
$$

If these constraints are met and an appropriate choice of algorithm is made, the agent implementing such a utility function is guaranteed to behave optimally. Let's discuss utility functions in greater detail with a concrete example. Consider the following lottery:

$$
L=[0.5, \$ 0 ; 0.5, \$ 1000]
$$

This represents a lottery where you receive $\$ 1000$ with probability 0.5 and $\$ 0$ with probability 0.5 . Now consider three agents A_{1}, A_{2}, and A_{3} which have utility functions $U_{1}(\$ x)=x, U_{2}(\$ x)=\sqrt{x}$, and $U_{3}(\$ x)=x^{2}$ respectively. If each of the three agents were faced with a choice between participting in the lottery and receiving a flat payment of $\$ 500$, which would they choose? The respective utilities for each agent of participating in the lottery and accepting the flat payment are listed in the following table:

Agent	Lottery	Flat Payment
1	500	500
2	15.81	22.36
3	500000	250000

These utility values for the lotteries were calculated as follows, making use of equation (2) above:

$$
\begin{aligned}
& U_{1}(L)=U_{1}([0.5, \$ 0 ; 0.5, \$ 1000])=0.5 \cdot U_{1}(\$ 1000)+0.5 \cdot U_{1}(\$ 0)=0.5 \cdot 1000+0.5 \cdot 0=500 \\
& U_{2}(L)=U_{2}([0.5, \$ 0 ; 0.5, \$ 1000])=0.5 \cdot U_{2}(\$ 1000)+0.5 \cdot U_{2}(\$ 0)=0.5 \cdot \sqrt{1000}+0.5 \cdot \sqrt{0}=15.81 \\
& U_{3}(L)=U_{1}([0.5, \$ 0 ; 0.5, \$ 1000])=0.5 \cdot U_{3}(\$ 1000)+0.5 \cdot U_{3}(\$ 0)=0.5 \cdot 1000^{2}+0.5 \cdot 0^{2}=500000
\end{aligned}
$$

With these results, we can see that agent A_{1} is indifferent between participating in the lottery and receiving the flat payment (the utilities for both cases are identical). Such an agent is known as risk-neutral. Similarly, agent A_{2} prefers the flat payment to the lottery and is known as risk-averse and agent A_{3} prefers the lottery to the flat payment and is known as risk-seeking.

