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Machine Learning
In the previous few notes of this course, we’ve learned about various types of models that help us reason
under uncertainty. Until now, we’ve assumed that the probabilistic models we’ve worked with can be taken
for granted, and the methods by which the underlying probability tables we worked with were generated have
been abstracted away. We’ll begin to break down this abstraction barrier as we delve into our discussion
of machine learning, a broad field of computer science that deals with constructing and/or learning the
parameters of a specified model given some data.

There are many machine learning algorithms which deal with many different types of problems and differ-
ent types of data, classified according to the tasks they hope to accomplish and the types of data that they
work with. Two primary subgroups of machine learning algorithms are supervised learning algorithms
and unsupervised learning algorithms. Supervised learning algorithms infer a relationship between input
data and corresponding output data in order to predict outputs for new, previously unseen input data. Unsu-
pervised learning algorithms, on the other hand, have input data that doesn’t have any corresponding output
data and so deal with recognizing inherent structure between or within datapoints and grouping and/or pro-
cessing them accordingly. In this class, the algorithms we’ll discuss will be limited to supervised learning
tasks.

(a) Training (b) Validation (c) Testing

Once you have a dataset that you’re ready to learn with, the machine learning process usually involves
splitting your dataset into three distinct subsets. The first, training data, is used to actually generate a
model mapping inputs to outputs. Then, validation data (also known as hold-out or development data)
is used to measure your model’s performance by making predictions on inputs and generating an accuracy
score. If your model doesn’t perform as well as you’d like it to, it’s always okay to go back and train again,
either by adjusting special model-specific values called hyperparameters or by using a different learning
algorithm altogether until you’re satisfied with your results. Finally, use your model to make predictions on
the third and final subset of your data, the test set. The test set is the portion of your data that’s never seen by
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your agent until the very end of development, and is the equivalent of a "final exam" to gauge performance
on real-world data.

In what follows we will be covering some foundational machine learning algorithms, such as Naive Bayes,
Linear Regression, Logistic Regression, and the Perceptron algorithm.

Naive Bayes
We’ll motivate our discussion of machine learning with a concrete example of a machine learning algorithm.
Let’s consider the common problem of building an email spam filter which sorts messages into spam (un-
wanted email) or ham (wanted email). Such a problem is called a classification problem – given various
datapoints (in this case, each email is a datapoint), our goal is to group them into one of two or more classes.
For classification problems, we’re given a training set of datapoints along with their corresponding labels,
which are typically one of a few discrete values.

As we’ve discussed, our goal will be to use this training data (emails, and a spam/ham label for each one)
to learn some sort of relationship that we can use to make predictions on previously unseen emails. In this
section we’ll describe how to construct a type of model for solving classification problems known as a Naive
Bayes Classifier.

To train a model to classify emails as spam or ham, we need some training data consisting of preclassified
emails that we can learn from. However, emails are simply strings of text, and in order to learn anything
useful, we need to extract certain attributes from each of them known as features. Features can be anything
ranging from specific word counts to text patterns (e.g. whether words are in all caps or not) to pretty much
any other attribute of the data that you can imagine.

The specific features extracted for training are often dependent on the specific problem you’re trying to
solve and which features you decide to select can often impact the performance of your model dramatically.
Deciding which features to utilize is known as feature engineering and is fundamental to machine learning,
but for the purposes of this course you can assume you’ll always be given the extracted features for any
given dataset. In this note, f(x) refers to a feature function applied to all inputs x before putting them in the
model.

Now let’s say you have a dictionary of n words, and from each email you extract a feature vector F ∈ Rn

where the ith entry in F is a random variable Fi which can take on a value of either a 0 or a 1 depending on
whether the ith word in your dictionary appears in the email under consideration. For example, if F200 is the
feature for the word free, we will have F200 = 1 if free appears in the email, and 0 if it does not. With these
definitions, we can define more concretely how to predict whether or not an email is spam or ham – if we
can generate a joint probability table between each Fi and and the label Y , we can compute the probability
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any email under consideration is spam or ham given it’s feature vector. Specifically, we can compute both

P(Y = spam|F1 = f1, . . . ,Fn = fn)

and
P(Y = ham|F1 = f1, . . . ,Fn = fn)

and simply label the email depending on which of the two probabilities is higher. Unfortunately, since
we have n features and 1 label, each of which can take on 2 distinct values, the joint probability table
corresponding to this distribution mandates a table size that’s exponential in n with 2n+1 entries - very
impractical! This problem is solved by modeling the joint probability table with a Bayes’ net, making the
critical simplifying assumption that each feature Fi is independent of all other features given the class label.
This is a very strong modeling assumption (and the reason that Naive Bayes is called naive), but it simplifies
inference and usually works well in practice. It leads to the following Bayes’ net to represent our desired
joint probability distribution.

Note that the rules of d-separation delineated earlier in the course make it immediately clear that in this
Bayes’ net each Fi is conditionally independent of all the others, given Y . Now we have one table for
P(Y ) with 2 entries, and n tables for each P(Fi | Y ) each with 22 = 4 entries for a total of 4n+ 2 entries -
linear in n! This simplifying assumption highlights the trade off that arises from the concept of statistical
efficiency; we sometimes need to compromise our model’s complexity in order to stay within the limits of
our computational resources.

Indeed, in cases where the number of features is sufficiently low, it’s common to make more assumptions
about relationships between features to generate a better model (corresponding to adding edges to your
Bayes’ net). With this model we’ve adopted, making predictions for unknown data points amounts to run-
ning inference on our Bayes’ net. We have observed values for F1, · · ·Fn, and want to choose the value of Y
that has the highest probability conditioned on these features:

prediction( f1, · · · fn) = argmax
y

P(Y = y|F1 = f1, . . .FN = fn)

= argmax
y

P(Y = y,F1 = f1, . . .FN = fn)

= argmax
y

P(Y = y)
n

∏
i=1

P(Fi = fi|Y = y)

where the first step is because the highest probability class will be the same in the normalized or unnor-
malized distribution, and the second comes directly from the Naive Bayes’ independence assumption that
features are independent given the class label (as seen in the graphical model structure).

Generalizing away from a spam filter, assume now that there are k class labels (possible values for Y ).
Additionally, after noting that our desired probabilities - the probability of each label yi given our features,
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P(Y = yi|F1 = f1, . . . ,Fn = fn) - is proportional to the joint P(Y = yi,F1 = f1, . . . ,Fn = fn), we can compute:

P(Y,F1 = f1, . . . ,Fn = fn) =


P(Y = y1,F1 = f1, . . . ,Fn = fn)
P(Y = y2,F1 = f1, . . . ,Fn = fn)

...
P(Y = yk,F1 = f1, . . . ,Fn = fn)

=


P(Y = y1)∏i P(Fi = fi|Y = y1)
P(Y = y2)∏i P(Fi = fi|Y = y2)

...
P(Y = yk)∏i P(Fi = fi|Y = yk)


Our prediction for class label corresponding to the feature vector F is simply the label corresponding to the
maximum value in the above computed vector:

prediction(F) = argmax
yi

P(Y = yi)∏
j

P(Fj = f j|Y = yi)

We’ve now learned the basic theory behind the modeling assumptions of the Naive Bayes’ classifier and
how to make predictions with one, but have yet to touch on how exactly we learn the conditional probability
tables used in our Bayes’ net from the input data. This will have to wait for our next topic of discussion,
parameter estimation.

Parameter Estimation
Assume you have a set of N sample points or observations, x1, . . . ,xN , and you believe that this data was
drawn from a distribution parametrized by an unknown value θ . In other words, you believe that the
probability Pθ (xi) of each of your observations is a function of θ . For example, we could be flipping a coin
which has probability θ of coming up heads.

How can you "learn" the most likely value of θ given your sample? For example, if we have 10 coin flips,
and saw that 7 of them were heads, what value should we choose for θ? One answer to this question is to
infer that θ is equal to the value that maximizes the probability of having selected your sample x1, . . . ,xN

from your assumed probability distribution. A frequently used and fundamental method in machine learning
known as maximum likelihood estimation (MLE) does exactly this.

Maximum likelihood estimation typically makes the following simplifying assumptions:

• Each sample is drawn from the same distribution. In other words, each xi is identically distributed.
In our coin flipping example, each coin flip has the same chance, θ , of coming up heads.

• Each sample xi is conditionally independent of the others, given the parameters for our distribution.
This is a strong assumption, but as we’ll see greatly helps simplify the problem of maximum likelihood
estimation and generally works well in practice. In the coin flipping example, the outcome of one flip
doesn’t affect any of the others.

• All possible values of θ are equally likely before we’ve seen any data (this is known as a uniform
prior).

The first two assumptions above are often referred to as independent, identically distributed (i.i.d.). The
third assumption above makes the MLE method a special case of the maximum a priori (MAP) method,
which allows for non-uniform priors.

Let’s now define the likelihood L (θ) of our sample, a function which represents the probability of having
drawn our sample from our distribution. For a fixed sample x1,xN , the likelihood is just a function of θ :

L (θ) = Pθ (x1, . . . ,xN)
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Using our simplifying assumption that the samples xi are i.i.d., the likelihood function can be re-expressed
as follows:

L (θ) =
N

∏
i=1

Pθ (xi)

How can we find the value of θ that maximizes this function? This will be the value of θ that best explains
the data we saw. Recall from calculus that at points where a function’s maxima and minima are realized, its
first derivative with respect to each of its inputs (also known as the function’s gradient) must be equal to
zero. Hence, the maximum likelihood estimate for θ is a value that satisfies the following equation:

∂

∂θ
L (θ) = 0

Let’s go through an example to make this concept more concrete. Say you have a bag filled with red and
blue balls and don’t know how many of each there are. You draw samples by taking a ball out of the bag,
noting the color, then putting the ball back in (sampling with replacement). Drawing a sample of three balls
from this bag yields red, red, blue. This seems to imply that we should infer that 2

3 of the balls in the bag
are red and 1

3 of the balls are blue. We’ll assume that each ball being taken out of the bag will be red with
probability θ and blue with probability 1−θ , for some value θ that we want to estimate (this is known as a
Bernoulli distribution):

Pθ (xi) =

{
θ xi = red
(1−θ) xi = blue

The likelihood of our sample is then:

L (θ) =
3

∏
i=1

Pθ (xi) = Pθ (x1 = red)Pθ (x2 = red)Pθ (x2 = blue) = θ
2 · (1−θ)

The final step is to set the derivative of the likelihood to 0 and solve for θ :

∂

∂θ
L (θ) =

∂

∂θ
θ

2 · (1−θ) = θ(2−3θ) = 0

Solving this equation for θ yields θ = 2
3 , which intuitively makes sense! (There’s a second solution, too,

θ = 0 – but this corresponds to a minimum of the likelihood function, as L (0) = 0 < L (2
3) =

4
27 .)

Maximum Likelihood for Naive Bayes
Let’s now return to the problem of inferring conditional probability tables for our spam classifier, beginning
with a recap of variables we know:

• n - the number of words in our dictionary.

• N - the number of observations (emails) you have for training. For our upcoming discussion, let’s also
define Nh as the number of training samples labeled as ham and Ns as the number of training samples
labeled as spam. Note Nh +Ns = N.

• Fi - a random variable which is 1 if the ith dictionary word is present in an email under consideration,
and 0 otherwise.

• Y - a random variable that’s either spam or ham depending on the label of the corresponding email.
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• f ( j)
i - this references the resolved value of the random variable Fi in the jth item in the training set. In

other words, each f ( j)
i is a 1 if word i appeared in jth email under consideration and 0 otherwise. This

is the first time we’re seeing this notation, but it’ll come in handy in the upcoming derivation.

Now within each conditional probability table P(Fi|Y ), note that we have two distinct Bernoulli distributions:
P(Fi|Y = ham) and P(Fi|Y = spam). For simplicity, let’s specifically consider P(Fi|Y = ham) and try to find
the maximum likelihood estimate for a parameter θ = P(Fi = 1|Y = ham) i.e. the probability that the ith

word in our dictionary appears in a ham email. Since we have Nh ham emails in our training set, we have
Nh observations of whether or not word i appeared in a ham email. Because our model assumes a Bernoulli
distribution for the appearance of each word given its label, we can formulate our likelihood function as
follows:

L (θ) =
Nh

∏
j=1

P(Fi = f ( j)
i |Y = ham) =

Nh

∏
j=1

θ
f ( j)
i (1−θ)1− f ( j)

i

The second step comes from a small mathematical trick: if f ( j)
i = 1 then

P(Fi = f ( j)
i |Y = ham) = θ

1(1−θ)0 = θ

and similarly if f ( j)
i = 0 then

P(Fi = f ( j)
i |Y = ham) = θ

0(1−θ)1 = (1−θ)

In order to compute the maximum likelihood estimate for θ , recall that the next step is to compute the
derivative of L (θ) and set it equal to 0. Attempting this proves quite difficult, as it’s no simple task to isolate
and solve for θ . Instead, we’ll employ a trick that’s very common in maximum likelihood derivations, and
that’s to instead find the value of θ the maximizes the log of the likelihood function. Because log(x) is a
strictly increasing function (sometimes referred to as a monotonic transformation), finding a value that
maximizes logL (θ) will also maximize L (θ). The expansion of logL (θ) is below:

logL (θ) = log
( Nh

∏
j=1

θ
f ( j)
i (1−θ)1− f ( j)

i

)

=
Nh

∑
j=1

log
(
θ

f ( j)
i (1−θ)1− f ( j)

i
)

=
Nh

∑
j=1

log
(
θ

f ( j)
i
)
+

Nh

∑
j=1

log
(
(1−θ)1− f ( j)

i )
)

= log(θ)
Nh

∑
j=1

f ( j)
i + log(1−θ)

Nh

∑
j=1

(1− f ( j)
i )

Note that in the above derivation, we’ve used the properties of the log function that log(ac) = c · log(a) and
log(ab) = log(a)+ log(b). Now we set the derivative of the log of the likelihood function to 0 and solve for
θ :
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∂

∂θ

(
log(θ)

Nh

∑
j=1

f ( j)
i + log(1−θ)

Nh

∑
j=1

(1− f ( j)
i )

)
= 0

1
θ

Nh

∑
j=1

f ( j)
i − 1

(1−θ)

Nh

∑
j=1

(1− f ( j)
i ) = 0

1
θ

Nh

∑
j=1

f ( j)
i =

1
(1−θ)

Nh

∑
j=1

(1− f ( j)
i )

(1−θ)
Nh

∑
j=1

f ( j)
i = θ

Nh

∑
j=1

(1− f ( j)
i )

Nh

∑
j=1

f ( j)
i −θ

Nh

∑
j=1

f ( j)
i = θ

Nh

∑
j=1

1−θ

Nh

∑
j=1

f ( j)
i

Nh

∑
j=1

f ( j)
i = θ ·Nh

θ =
1

Nh

Nh

∑
j=1

f ( j)
i

We’ve arrived at a remarkably simple final result! According to our formula above, the maximum likelihood
estimate for θ (which, remember, is the probability that P(Fi = 1|Y = ham)) corresponds to counting the
number of ham emails in which word i appears and dividing it by the total number of ham emails. You
may think this was a lot of work for an intuitive result (and it was), but the derivation and techniques
will be useful for more complex distributions than the simple Bernoulli distribution we are using for each
feature here. To summarize, in this Naive Bayes model with Bernoulli feature distributions, within any given
class the maximum likelihood estimate for the probability of any outcome corresponds to the count for the
outcome divided by the total number of samples for the given class. The above derivation can be generalized
to cases where we have more than two classes and more than two outcomes for each feature, though this
derivation is not provided here.

Smoothing
Though maximum likelihood estimation is a very powerful method for parameter estimation, bad training
data can often lead to unfortunate consequences. For example, if every time the word “minute” appears in
an email in our training set, that email is classified as spam, our trained model will learn that

P(Fminute = 1|Y = ham) = 0

Hence in an unseen email, if the word minute ever shows up, P(Y = ham)∏i P(Fi|Y = ham) = 0, and so
your model will never classify any email containing the word minute as ham. This is a classic example
of overfitting, or building a model that doesn’t generalize well to previously unseen data. Just because a
specific word didn’t appear in an email in your training data, that doesn’t mean that it won’t appear in an
email in your test data or in the real world. Overfitting with Naive Bayes’ classifiers can be mitigated by
Laplace smoothing. Conceptually, Laplace smoothing with strength k assumes having seen k extra of each
outcome. Hence if for a given sample your maximum likelihood estimate for an outcome x that can take on
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|X | different values from a sample of size N is

PMLE(x) =
count(x)

N

then the Laplace estimate with strength k is

PLAP,k(x) =
count(x)+ k

N + k|X |

What does this equation say? We’ve made the assumption of seeing k additional instances of each outcome,
and so act as if we’ve seen count(x)+k rather than count(x) instances of x. Similarly, if we see k additional
instances of each of |X | classes, then we must add k|X | to our original number of samples N. Together,
these two statements yield the above formula. A similar result holds for computing Laplace estimates for
conditionals (which is useful for computing Laplace estimates for outcomes across different classes):

PLAP,k(x|y) =
count(x,y)+ k
count(y)+ k|X |

There are two particularly notable cases for Laplace smoothing. The first is when k = 0, then PLAP,0(x) =
PMLE(x). The second is the case where k = ∞. Observing a very large, infinite number of each outcome
makes the results of your actual sample inconsequential and so your Laplace estimates imply that each
outcome is equally likely. Indeed:

PLAP,∞(x) =
1
|X |

The specific value of k that’s appropriate to use in your model is typically determined by trial-and-error. k is
a hyperparameter in your model, which means that you can set it to whatever you want and see which value
yields the best prediction accuracy/performance on your validation data.
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