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Q1. Searching with Heuristics
Consider the A* searching process on the connected undirected graph, with starting node S and the goal node G. Suppose the
cost for each connection edge is always positive. We define ℎ∗(𝑋) as the shortest (optimal) distance to G from a node X.
Answer Questions (a). Questions (b) and (c) are optional.

(a) Suppose ℎ is an admissible heuristic, and we conduct A* tree search using heuristic ℎ′ and finally find a solution. Let
𝐶 be the cost of the found path (directed by ℎ′, defined in part (a)) from S to G

(i) Choose one best answer for each condition below.
1. If ℎ′(𝑋) = 1

2ℎ(𝑋) for all Node 𝑋, then  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)

2. If ℎ′(𝑋) = ℎ(𝑋)+ℎ∗(𝑋)
2 for all Node 𝑋, then  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)

3. If ℎ′(𝑋) = ℎ(𝑋) + ℎ∗(𝑋) for all Node 𝑋, then # 𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆)  𝐶 ≥ ℎ∗(𝑆)
4. If we define the set 𝐾(𝑋) for a node 𝑋 as all its neighbor nodes 𝑌 satisfying ℎ∗(𝑋) > ℎ∗(𝑌 ), and the following

always holds

ℎ′(𝑋) ≤
{

min𝑌∈𝐾(𝑋) ℎ′(𝑌 ) − ℎ(𝑌 ) + ℎ(𝑋) if 𝐾(𝑋) ≠ ∅
ℎ(𝑋) if 𝐾(𝑋) = ∅

then,  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
5. If 𝐾 is the same as above, we have

ℎ′(𝑋) =
{

min𝑌∈𝐾(𝑋) ℎ(𝑌 ) + 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) if 𝐾(𝑋) ≠ ∅
ℎ(𝑋) if 𝐾(𝑋) = ∅

where 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) is the cost of the edge connecting 𝑋 and 𝑌 ,
then,  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)

6. If ℎ′(𝑋) = min𝑌∈𝐾(𝑋)+{𝑋} ℎ(𝑌 ) (𝐾 is the same as above),  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
(ii) In which of the conditions above, ℎ′ is still admissible and for sure to dominate ℎ? Check all that apply. Remember

we say ℎ1 dominates ℎ2 when ℎ1(𝑋) ≥ ℎ2(𝑋) holds for all 𝑋. □ 1 ■ 2 □ 3 □ 4 □ 5 □ 6

(b) [Optional] Suppose ℎ is a consistent heuristic, and we conduct A* graph search using heuristic ℎ′ and finally find a
solution.

(i) Answer exactly the same questions for each conditions in Question (a)(i).
1.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆) 2.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
3. # 𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆)  𝐶 ≥ ℎ∗(𝑆) 4.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆)
5.  𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆) # 𝐶 ≥ ℎ∗(𝑆) 6. # 𝐶 = ℎ∗(𝑆) # 𝐶 > ℎ∗(𝑆)  𝐶 ≥ ℎ∗(𝑆)

(ii) In which of the conditions above, ℎ′ is still consistent and for sure to dominate ℎ? Check all that apply.
□ 1 ■ 2 □ 3 □ 4 ■ 5 □ 6

Grading for Bubbles: 0.5 pts for a1 a2 a3 a6 b1 b2. 1 pts for a4 a5 b3 b4 b5 b6.
Explanations:
All the 𝐶 > ℎ∗(𝑆) can be ruled out by this counter example: there exists only one path from S to G.
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Now for any 𝐶 = ℎ∗(𝑆) we shall provide a proof. For any 𝐶 ≥ ℎ∗(𝑆) we shall provide a counter example.
a3b3 - Counter example: SAG fully connected. cost: SG=10, SA=1, AG=7. h*: S=8, A=7, G=0. h: S=8, A=7, G=0.
h’: S=16, A=14, G=0.
a4 - Proof: via induction. We can have an ordering of the nodes {𝑋𝑗}𝑛𝑗=1 such that ℎ∗(𝑋𝑖) ≥ ℎ∗(𝑋𝑗) if 𝑖 < 𝑗. Note any
𝑋𝑘 ∈ 𝐾(𝑋𝑗) has 𝑘 > 𝑗.
𝑋𝑛 is G, and has ℎ′(𝑋𝑛) ≤ ℎ(𝑋𝑛).
Now for 𝑗, suppose ℎ′(𝑋𝑘) ≤ ℎ(𝑋𝑘) for any 𝑘 > 𝑗 holds, we can have ℎ′(𝑋𝑗) ≤ ℎ′(𝑋𝑘) − ℎ(𝑋𝑘) + ℎ(𝑋𝑗) ≤ ℎ(𝑋𝑗)(𝐾(𝑋𝑗) = ∅ also get the result).
b4 - Proof: from a4 we already know that ℎ′ is admissible.
Now for each edge 𝑋𝑌 , suppose ℎ∗(𝑋) ≥ ℎ∗(𝑌 ), we always have ℎ′(𝑋) ≤ ℎ′(𝑌 ) − ℎ(𝑌 ) + ℎ(𝑋), which means ℎ′(𝑋) −
ℎ′(𝑌 ) ≤ ℎ(𝑋) − ℎ(𝑌 ) ≤ 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ), which means we always underestimate the cost of each edge from the potential
optimal path direction. Note h’ is not necessarily to be consistent (ℎ′(𝑌 ) − ℎ′(𝑋) might be very large, e.g. you can
arbitrarily modify h’(S) to be super small), but it always comes with optimality.
a5 - Proof: the empty K path: ℎ′(𝑋) ≤ ℎ(𝑋) ≤ ℎ∗(𝑋). the non-empty K path: there always exists a 𝑌0 ∈ 𝐾(𝑋) such that
𝑌0 is on the optimal path from 𝑋 to 𝐺. We know 𝑐𝑜𝑠𝑡(𝑋, 𝑌0) = ℎ∗(𝑋)−ℎ∗(𝑌0), so we have ℎ′(𝑋) ≤ ℎ(𝑌0)+𝑐𝑜𝑠𝑡(𝑋, 𝑌0) ≤
ℎ∗(𝑌0) + 𝑐𝑜𝑠𝑡(𝑋, 𝑌0) = ℎ∗(𝑋).
b5 - Proof:
First we prove ℎ′(𝑋) ≥ ℎ(𝑋). For any edge 𝑋𝑌 , we have ℎ(𝑋)−ℎ(𝑌 ) ≤ 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ). So we can have ℎ(𝑌 )+𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) ≥
ℎ(𝑋) holds for any edge, and hence we get the dominace of ℎ′ over ℎ. Note this holds only for consistent ℎ.
We then have ℎ′(𝑋) − ℎ′(𝑌 ) ≤ ℎ(𝑌 ) + 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ) − ℎ′(𝑌 ) ≤ 𝑐𝑜𝑠𝑡(𝑋, 𝑌 ). So we get the consistency of ℎ′.
Extension Conclusion 1: If we change K(X) into {all neighbouring nodes of X} + {X}, h’ did not change.
Extension Conclusion 2: h’ dominates h, which is a better heuristics. This (looking one step ahead with h’) is equivalent
to looking two steps ahead in the A* search with h (while the vanilla A* search is just looking one step ahead with h).
a6 - Proof: ℎ′(𝑋) ≤ ℎ(𝑋) ≤ ℎ∗(𝑋).
b6 - counter example: SAB fully connected, BG connected. cost: SA=8, AB=1, SB=10, BG=30. h*: A=31, B=30 G=0.
h=h*. h’: A=30, B=0, C=0.
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(c) [Optional] Suppose ℎ is an admissible heuristic, and we conduct A* tree search using heuristic ℎ′ and finally find a
solution.
If 𝜖 > 0, and 𝑋0 is a node in the graph, and ℎ′ is a heuristic such that

ℎ′(𝑋) =
{

ℎ(𝑋) if 𝑋 = 𝑋0
ℎ(𝑋) + 𝜖 otherwise

• Alice claims ℎ′ can be inadmissible, and hence 𝐶 = ℎ∗(𝑆) does not always hold.
• Bob instead thinks the node expansion order directed by ℎ′ is the same as the heuristic ℎ′′, where

ℎ′′(𝑋) =
{

ℎ(𝑋) − 𝜖 if 𝑋 = 𝑋0
ℎ(𝑋) if otherwise

Since ℎ′′ is admissible and will lead to 𝐶 = ℎ∗(𝑆), and so does ℎ′. Hence, 𝐶 = ℎ∗(𝑆) always holds.
The two conclusions (underlined) apparently contradict with each other, and only exactly one of them are correct and
the other is wrong. Choose the best explanation from below - which student’s conclusion is wrong, and why are they
wrong?
# Alice’s conclusion is wrong, because the heuristic ℎ′ is always admissible.
# Alice’s conclusion is wrong, because an inadmissible heuristics does not necessarily always lead to the failure of the
optimality when conducting A* tree search.
# Alice’s conclusion is wrong, because of another reason that is not listed above.
# Bob’s conclusion is wrong, because the node visiting expansion ordering of ℎ′′ during searching might not be the

same as ℎ′.
# Bob’s conclusion is wrong, because the heuristic ℎ′′ might lead to an incomplete search, regardless of its optimally

property.
 Bob’s conclusion is wrong, because of another reason that is not listed above.

Choice 4 is incorrect, because the difference betweenℎ′ andℎ′′ is a constant. During searching, the choice of the expansion
of the fringe will not be affected if all the nodes add the same constant to the heuristics.
Choice 5 is incorrect because there will never be an infinite loop if there are no cycle has negative COST sum (rather
than HEURISTICS). If there is a cycle, such that its COST sum is positive, and all the nodes in the cycle have negative
heuristics, when we do g+h, g is getting larger and larger, while h remains a not-that-large negative value. Soon, the
search algorithm will be favoring other paths even if the h in there are not negative.
The true reason: ℎ′′ violate a property of admissible heuristic. Since ℎ is admissible, we have ℎ(𝐺) = 0. If 𝑋0 = 𝐺, we
have a negative heuristic value at ℎ′′(𝐺), and it is no longer admissible. If 𝑋0 ≠ 𝐺, then it is indeed that the optimality
holds - the only change is that more nodes will be likely to be expanded for ℎ′ and ℎ′′ compared to ℎ.
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Q2. Iterative Deepening Search
Pacman is performing search in a maze again! The search graph has a branching factor of b, a solution of depth d, a maximum
depth of m, and edge costs that may not be integers. Although he knows breadth first search returns the solution with the smallest
depth, it takes up too much space, so he decides to try using iterative deepening. As a reminder, in standard depth-first iterative
deepening we start by performing a depth first search terminated at a maximum depth of one. If no solution is found, we start
over and perform a depth first search to depth two and so on. This way we obtain the shallowest solution, but use only O(bd)
space.
But Pacman decides to use a variant of iterative deepening called iterative deepening A*, where instead of limiting the depth-
first search by depth as in standard iterative deepening search, we can limit the depth-first search by the f value as defined in A*
search. As a reminder f [node] = g[node] + h[node] where g[node] is the cost of the path from the start state and h[node] is a
heuristic value estimating the cost to the closest goal state.
In this question, all searches are tree searches and not graph searches.

(a) Complete the pseudocode outlining how to perform iterative deepening A* by choosing the option from the next page
that fills in each of these blanks. Iterative deepening A* should return the solution with the lowest cost when given a
consistent heuristic. Note that cutoff is a boolean and new-limit is a number.

function ITERATIVE-DEEPENING-TREE-SEARCH(problem)
start-node ← MAKE-NODE(INITIAL-STATE[problem])
limit ← f [start-node]
loop

fringe ← MAKE-STACK(start-node)
new-limit ← (i)

cutoff ← (ii)
while fringe is not empty do

node ← REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then

return node
end if
for child-node in EXPAND(STATE[node], problem) do

if f [child-node] ≤ limit then
fringe ← INSERT(child-node, fringe)
new-limit ← (iii)

cutoff ← (iv)
else

new-limit ← (v)

cutoff ← (vi)
end if

end for
end while
if not cutoff then

return failure
end if
limit ← (vii)

end loop
end function
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𝐀𝟏 −∞ 𝐀𝟐 0 𝐀𝟑 ∞ 𝐀𝟒 limit

𝐁𝟏 True 𝐁𝟐 False 𝐁𝟑 cutoff 𝐁𝟒 not cutoff

𝐂𝟏 new-limit 𝐂𝟐 new-limit + 1 𝐂𝟑 new-limit +
f [node]

𝐂𝟒 new-limit +
f [child-node]

𝐂𝟓 MIN(new-limit,
f [node])

𝐂𝟔 MIN(new-limit,
f [child-node])

𝐂𝟕 MAX(new-limit,
f [node])

𝐂𝟖 MAX(new-limit,
f [child-node])

(i) #𝐀𝟏 #𝐀𝟐  𝐀𝟑 #𝐀𝟒

(ii) #𝐁𝟏  𝐁𝟐 #𝐁𝟑 #𝐁𝟒

(iii)  𝐂𝟏 #𝐂𝟐 #𝐂𝟑 #𝐂𝟒
#𝐂𝟓 #𝐂𝟔  𝐂𝟕  𝐂𝟖

(iv) #𝐁𝟏 #𝐁𝟐  𝐁𝟑 #𝐁𝟒

(v) #𝐂𝟏 #𝐂𝟐 #𝐂𝟑 #𝐂𝟒
#𝐂𝟓  𝐂𝟔 #𝐂𝟕 #𝐂𝟖

(vi)  𝐁𝟏 #𝐁𝟐 #𝐁𝟑 #𝐁𝟒

(vii)  𝐂𝟏 #𝐂𝟐 #𝐂𝟑 #𝐂𝟒
#𝐂𝟓 #𝐂𝟔 #𝐂𝟕 #𝐂𝟖

The cutoff variable keeps track of whether there are items that aren’t being explored because of the limit. If cutoff is false
and the algorithm has exited the while, no nodes were cutoff (not added to the fringe because of the limit). This scenario
suggests that there is no solution.

In order to ensure that iterative deepening A* obtains the lowest cost solution efficiently, we want to increase the limit as
much as we can while guaranteeing optimality. Setting new-limit to the smallest f cost of nodes that were cutoff achieves
this. When nodes aren’t cutoff (part iii), the new-limit should not change. Hence C1, C7, C8, or a combination of the
three were accepted as answers.

(b) Assuming there are no ties in f value between nodes, which of the following statements about the number of nodes that
iterative deepening A* expands is True? If the same node is expanded multiple times, count all of the times that it is
expanded. If none of the options are correct, mark None of the above.

 The number of times that iterative deepening A* expands a node is greater than or equal to the number of times
A* will expand a node.
# The number of times that iterative deepening A* expands a node is less than or equal to the number of times

A* will expand a node.
# We don’t know if the number of times iterative deepening A* expands a node is more or less than the number

of times A* will expand a node.
# None of the above

Iterative deepening A* runs depth first search multiples at different limit values. This causes iterative deepening A* to
expand certain nodes multiple times.
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