Q1. First Order Logic

Consider a vocabulary with the following symbols:

- Occuption (p, o) : Predicate. Person p has occuption o.
- Customer $(p 1, p 2)$: Predicate. Person $p 1$ is a customer of person $p 2$.
- $\operatorname{Boss}(p 1, p 2)$: Predicate. Person $p 1$ is a boss of person $p 2$.
- Doctor, Surgeon, Lawyer, Actor: Constants denoting occupations.
- Emily, Joe: Constants denoting people.

Use these symbols to write the following assertions in first-order logic:
(i) Emily is either a surgeon or a lawyer.
$O(E, S) \vee O(E, L)$
(ii) Joe is an actor, but he also holds another job.
$O(J, A) \wedge \exists o o \neq A \wedge O(J, o)$
(iii) All surgeons are doctors.
$\forall p O(p, S) \Rightarrow O(p, D)$
(iv) Joe does not have a lawyer (i.e., is not a customer of any lawyer).
$\neg \exists p C(J, p) \wedge O(p, L)$
(v) Emily has a boss who is a lawyer.
$\exists p B(p, E) \wedge O(p, L)$
(vi) There exists a lawyer all of whose customers are doctors.
$\exists p O(p, L) \wedge \forall q C(q, p) \Rightarrow O(q, D)$
(vii) Every surgeon has a lawyer.
$\forall p O(p, S) \Rightarrow \exists q O(q, L) \wedge C(p, q)$

Q2. Logic

(a) Prove, or find a counterexample to, each of the following assertions:
(i) If $\alpha \vDash \gamma$ or $\beta \vDash \gamma$ (or both) then $(\alpha \wedge \beta) \vDash \gamma$

True. This follows from monotonicity.
(ii) If $(\alpha \wedge \beta) \vDash \gamma$ then $\alpha \vDash \gamma$ or $\beta \vDash \gamma$ (or both).

False. Consider Consider $\alpha \equiv A, \beta \equiv B, \gamma \equiv(A \wedge B)$.
(iii) If $\alpha \vDash(\beta \vee \gamma)$ then $\alpha \vDash \beta$ or $\alpha \vDash \gamma$ (or both).

False. Consider $\beta \equiv A, \gamma \equiv \neg A$.
(b) Decide whether each of the following sentences is valid, unsatisfiable, or neither.
(i) Smoke \Longrightarrow Smoke

Valid
(ii) Smoke \Longrightarrow Fire

Neither
(iii) (Smoke \Longrightarrow Fire) $\Longrightarrow(\neg$ Smoke $\Longrightarrow \neg$ Fire $)$

Neither
(iv) Smoke \vee Fire $\vee \neg$ Fire

Valid
(v) $(($ Smoke \wedge Heat $) \Longrightarrow$ Fire $) \Longleftrightarrow(($ Smoke \Longrightarrow Fire $) \vee($ Heat \Longrightarrow Fire $))$

Valid
(vi) $($ Smoke \Longrightarrow Fire $) \Longrightarrow(($ Smoke \wedge Heat $) \Longrightarrow$ Fire $)$

Valid
(vii) Big $\vee \operatorname{Dumb} \vee(B i g \Longrightarrow D u m b)$

Valid
(c) Suppose an agent inhabits a world with two states, S and $\neg S$, and can do exactly one of two actions, a and b. Action a does nothing and action b flips from one state to the other. Let S^{t} be the proposition that the agent is in state S at time t, and let a^{t} be the proposition that the agent does action a at time t (similarly for b^{t}).
(i) Write a successor-state axiom for S^{t+1}.
$S^{t+1} \Longleftrightarrow\left[\left(S^{t} \wedge a^{t}\right) \vee\left(\neg S^{t} \wedge b^{t}\right)\right]$.
(ii) Convert the sentence in the previous part into CNF.

Because the agent can do exactly one action, we know that $b^{t} \equiv \neg a^{t}$ so we replace b^{t} throughout. We obtain four clauses:
1: $\left(\neg S^{t+1} \vee S^{t} \vee \neg a^{t}\right)$
2: $\left(\neg S^{t+1} \vee \neg S^{t} \vee a^{t}\right)$
3: $\left(S^{t+1} \vee \neg S^{t} \vee \neg a^{t}\right)$
4: $\left(S^{t+1} \vee S^{t} \vee a^{t}\right)$

