1 Probability

Use the probability table to calculate the following values:

X_{1}	X_{2}	X_{3}	$P\left(X_{1}, X_{2}, X_{3}\right)$
0	0	0	0.05
1	0	0	0.1
0	1	0	0.4
1	1	0	0.1
0	0	1	0.1
1	0	1	0.05
0	1	1	0.2
1	1	1	0.0

1. $P\left(X_{1}=1, X_{2}=0\right)=0.15$
2. $P\left(X_{3}=0\right)=0.65$
3. $P\left(X_{2}=1 \mid X_{3}=1\right)=0.2 / 0.35$
4. $P\left(X_{1}=0 \mid X_{2}=1, X_{3}=1\right)=1$
5. $P\left(X_{1}=0, X_{2}=1 \mid X_{3}=1\right)=0.2 / 0.35$

Q2. Bayes Nets: Green Party President

In a parallel universe the Green Party is running for presidency. Whether a Green Party President is elected (G) will have an effect on whether marijuana is legalized (M), which then influences whether the budget is balanced (B), and whether class attendance increases (C). Armed with the power of probability, the analysts model the situation with the Bayes Net below.

1. The full joint distribution is given below. Fill in the missing values.

\boldsymbol{G}	\mathbf{M}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{P}(\boldsymbol{G}, \boldsymbol{M}, \boldsymbol{B}, \boldsymbol{C})$
+	+	+	+	$1 / 150$
+	+	+	-	$1 / 50$
+	+	-	+	$1 / 100$
+	+	-	-	$3 / 100$
+	-	+	+	$1 / 300$
+	-	+	-	$1 / 300$
+	-	-	+	$1 / 75$
+	-	-	-	$1 / 75$

\boldsymbol{G}	\boldsymbol{M}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{P}(\boldsymbol{G}, \boldsymbol{M}, \boldsymbol{B}, \boldsymbol{C})$
-	+	+	+	$9 / 400$
-	+	+	-	$27 / 400$
-	+	-	+	$27 / 800$
-	+	-	-	$81 / 800$
-	-	+	+	$27 / 400$
-	-	+	-	$27 / 400$
-	-	-	+	$27 / 100$
-	-	-	-	$27 / 100$

2. Now, add a node S to the Bayes net that reflects the possibility that a new scientific study could influence the probability that marijuana is legalized. Assume that the study does not directly influence B or C. Draw the new Bayes net below. Which CPT or CPT's need to be modified?

$P(M \mid G)$ will become $P(M \mid G, S)$, and will contain 8 entries instead of 4 .

Q3. [Optional Logic Review] In What Worlds?

(a) We wish to come up with hypotheses that entail the following sentences:

- $S_{1}: X_{1} \wedge X_{2} \Longrightarrow Y$
- $S_{2}: \neg X_{1} \vee X_{2} \Longrightarrow Y$

In this problem, we want to come up with a hypothesis H such that $H \vDash S_{1} \wedge H \vDash S_{2}$.
(i) Assume we have the hypothesis $H: Y \Longleftrightarrow X_{1} \vee X_{2}$.

Does H entail S_{1} ? Yes \bigcirc No
Does H entail S_{2} ? \bigcirc Yes No
By looking at the truth table, you see that the for all worlds H is true, S_{1} is true. However, H does not entail S_{2}. One example is $X_{1}=$ false, $X_{2}=$ false,$Y=$ true.
(ii) Pretend that we have obtained a magical solver, $S A T(s)$ which takes in a sentence s and returns true if s is satisfiable and false otherwise. We wishes to use this solver to determine whether a hypothesis H^{\prime} entails the two sentences S_{1} and S_{2}. Mark all of the following expressions that correctly return true if and only if $H^{\prime} \vDash S_{1} \wedge H^{\prime} \vDash S_{2}$. If none of the expressions are correct, select "None of the above".

$\square S A T\left(H^{\prime} \wedge \neg\left(S_{1} \wedge S_{2}\right)\right)$	$\square S A T\left(\neg H^{\prime} \vee\left(S_{1} \wedge S_{2}\right)\right)$
$\neg S A T\left(H^{\prime} \wedge \neg\left(S_{1} \wedge S_{2}\right)\right)$	$\square \neg S A T\left(\neg H^{\prime} \vee\left(S_{1} \wedge S_{2}\right)\right)$
\square None of the above	
for H^{\prime} to entail both S_{1} and S_{2}, it must hold that $H^{\prime} \wedge \neg\left(S_{1} \wedge S_{2}\right)$ is not satisfiable.	

Four people, Alex, Betty, Cathy, and Dan are going to a famliy gathering. They can bring dishes or games. They have the following predicates in their vocabulary:
[topsep=-10pt] Brought (p, i) : Person p brought a dish or game i. Cooked (p, d) : Person p cooked dish d. Played (p, g) : Person p played game g.
(b) Select which first-order logic sentences are syntactically correct translations for the following English sentences. You must use the syntax shown in class (eg. $\forall, \exists, \wedge, \Rightarrow, \Leftrightarrow$). Please select all that apply.
(i) At least one dish cooked by Alex was brought by Betty.

```
\(\exists d \operatorname{Cooked}(A, d) \wedge \operatorname{Brought}(B, d)\)
\(\square[\exists d \operatorname{Cooked}(A, d)] \wedge\left[\forall d^{\prime} \wedge\left(d^{\prime}=d\right) \operatorname{Brought}\left(\boldsymbol{B}, d^{\prime}\right)\right]\)
\(\neg[\forall d \operatorname{Cooked}(A, d) \vee \operatorname{Brought}(B, d)]\)
\(\exists d_{1}, d_{2} \operatorname{Cooked}\left(A, d_{1}\right) \wedge\left(d_{2}=d_{1}\right) \wedge \operatorname{Brought}\left(B, d_{2}\right)\)
```

(ii) At least one game played by Cathy is only played by people who brought dishes.
$\square \neg[\forall g \operatorname{Played}(C, g) \vee[\exists p \operatorname{Played}(p, g) \Longrightarrow \forall d \operatorname{Brought}(p, d)]]$
$\forall p \exists g \operatorname{Played}(C, g) \wedge \operatorname{Played}(p, g) \Longrightarrow \exists d \operatorname{Brought}(p, d)$
$\exists g \operatorname{Played}(C, g) \Longrightarrow \forall p \exists d \operatorname{Played}(p, g) \wedge \operatorname{Brought}(p, d)$
$\exists g \operatorname{Played}(C, g) \wedge[\forall p \operatorname{Played}(p, g) \Rightarrow \exists d, \operatorname{Brought}(p, d)]$
(c) Assume we have the following sentence with variables A, B, C, and D, where each variable takes Boolean values:

$$
S 3:(A \vee B \vee \neg C) \wedge(A \vee \neg B \vee D) \wedge(\neg B \vee \neg D)
$$

(i) For the above sentence $S 3$, state how many worlds make the sentence true. [Hint: you can do this and the next part without constructing a truth table!]

```
8
```

(1) Clauses disjoint (2) clauses with k literals remove 2^{n-k} models.
(ii) Does $S 3$ ₹ $(A \wedge B \wedge D)$?Yes
No

