Q1. Machine Learning: Potpourri

(a) What it the minimum number of parameters needed to fully model a joint distribution $P\left(Y, F_{1}, F_{2}, \ldots, F_{n}\right)$ over label Y and n features F_{i} ? Assume binary class where each feature can possibly take on k distinct values. $2 k^{n}-1$
(b) Under the Naive Bayes assumption, what is the minimum number of parameters needed to model a joint distribution $P\left(Y, F_{1}, F_{2}, \ldots, F_{n}\right)$ over label Y and n features F_{i} ? Assume binary class where each feature can take on k distinct values. $2 n(k-1)+1$
(c) You suspect that you are overfitting with your Naive Bayes with Laplace Smoothing. How would you adjust the strength k in Laplace Smoothing?
Increase k

Decrease k

(d) While using Naive Bayes with Laplace Smoothing, increasing the strength k in Laplace Smoothing can:

Increase training error	\square Decrease training error
Increase validation error	\square
Decrease validation error	

(e) It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable in its feature space.
\bigcirc True
False
(f) If the perceptron algorithm terminates, then it is guaranteed to find a max-margin separating decision boundary.True
False
(g) In binary perceptron where the initial weight vector is $\overrightarrow{0}$, the final weight vector can be written as a linear combination of the training data feature vectors.
True
\bigcirc False
(h) For binary class classification, logistic regression produces a linear decision boundary.

True
\bigcirc False
(i) In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network with a sigmoid activation and the cross-entropy loss function.
True
False
(j) You train a linear classifier on 1,000 training points and discover that the training accuracy is only 50%. Which of the following, if done in isolation, has a good chance of improving your training accuracy?

Add novel features
Train on more data
(k) You now try training a neural network but you find that the training accuracy is still very low. Which of the following, if done in isolation, has a good chance of improving your training accuracy?

Add more hidden layers
Add more units to the hidden layers

Q2. Neural Networks: Representation

G_{2} :

G_{3} :

G_{4} :

G_{5} :

H_{5} :

For each of the piecewise-linear functions below, mark all networks from the list above that can represent the function exactly on the range $x \in(-\infty, \infty)$. In the networks above, relu denotes the element-wise ReLU nonlinearity: $\operatorname{relu}(z)=\max (0, z)$. The networks G_{i} use 1-dimensional layers, while the networks H_{i} have some 2-dimensional intermediate layers.
(a)

The networks G_{3}, G_{4}, G_{5} include a ReLU nonlinearity on a scalar quantity, so it is impossible for their output to represent a non-horizontal straight line. On the other hand, H_{3}, H_{4}, H_{5} have a 2-dimensional hidden layer, which allows two ReLU elements facing in opposite directions to be added together to form a straight line. The second subpart requires a bias term because the line does not pass through the origin.
(b)

These functions include multiple non-horizontal linear regions, so they cannot be represented by any of the networks G_{i} which apply ReLU no more than once to a scalar quantity.
The first subpart can be represented by any of the networks with 2-dimensional ReLU nodes. The point of nonlinearity occurs at the origin, so nonzero bias terms are not required.

The second subpart has 3 points where the slope changes, but the networks H_{i} only have a single 2-dimensional ReLU node. Each application of ReLU to one element can only introduce a change of slope for a single value of x.
(c)

Both functions have two points where the slope changes, so none of the networks $G_{i} ; H_{1}, H_{2}$ can represent them.
An output bias term is required for the first subpart because one of the flat regions must be generated by the flat part of a ReLU function, but neither one of them is at $y=0$.
The second subpart doesn't require a bias term at the output: it can be represented as $-r e l u\left(\frac{-x+1}{2}\right)-r e l u(x+1)$. Note how if the segment at $x>2$ were to be extended to cross the x axis, it would cross exactly at $x=-1$, the location of the other slope change. A similar statement is true for the segment at $x<-1$.

