CS 188 Spring 2024 Introduction to Artificial Intelligence Exam

Exam Prep 11 Solutions

Q1. Machine Learning: Potpourri

(a)	What it the minimum number of parameters needed to fully model a joint distribution $P(Y, F_1, F_2,, F_n)$ over label Y and n features F_i ? Assume binary class where each feature can possibly take on k distinct values. $2k^n - 1$	
(b)	Under the Naive Bayes assumption , what is the minimum number of parameters needed to model a joint distribution $P(Y, F_1, F_2,, F_n)$ over label Y and n features F_i ? Assume binary class where each feature can take on k distinct values. $2n(k-1)+1$	
(c)	You suspect that you are overfitting with your Naive Bayes with Laplace Smoothing. How would you adjust the strength k in Laplace Smoothing?	
	Increase k	\bigcirc Decrease k
(d) While using Naive Bayes with Laplace Smoothing, increasing the strength k in Laplace Smoothing.		hing, increasing the strength k in Laplace Smoothing can:
	Increase training error	Decrease training error
	Increase validation error	Decrease validation error
(e)	e) It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable in its feature sp	
	O True	False
(f)	If the perceptron algorithm terminates, then it	is guaranteed to find a max-margin separating decision boundary.
	O True	False
(g)	In binary perceptron where the initial weight vector is $\vec{0}$, the final weight vector can be written as a linear conthe training data feature vectors.	
	True	O False
(h)) For binary class classification, logistic regression produces a linear decision boundary.	
	True	O False
(i)	In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network with a sigmoid activation and the cross-entropy loss function.	
	True	O False
(j)	You train a linear classifier on 1,000 training points and discover that the training accuracy is only 50%. Which of the following, if done in isolation, has a good chance of improving your training accuracy?	
	Add novel features	Train on more data
(k)	You now try training a neural network but you find that the training accuracy is still very low. Which of the following, it done in isolation, has a good chance of improving your training accuracy?	
	Add more hidden layers	Add more units to the hidden layers

Q2. Neural Networks: Representation

For each of the piecewise-linear functions below, mark all networks from the list above that can represent the function **exactly** on the range $x \in (-\infty, \infty)$. In the networks above, *relu* denotes the element-wise ReLU nonlinearity: relu(z) = max(0, z). The networks G_i use 1-dimensional layers, while the networks H_i have some 2-dimensional intermediate layers.

The networks G_3 , G_4 , G_5 include a ReLU nonlinearity on a scalar quantity, so it is impossible for their output to represent a non-horizontal straight line. On the other hand, H_3 , H_4 , H_5 have a 2-dimensional hidden layer, which allows two ReLU elements facing in opposite directions to be added together to form a straight line. The second subpart requires a bias term because the line does not pass through the origin.

These functions include multiple non-horizontal linear regions, so they cannot be represented by any of the networks G_i which apply ReLU no more than once to a scalar quantity.

The first subpart can be represented by any of the networks with 2-dimensional ReLU nodes. The point of nonlinearity occurs at the origin, so nonzero bias terms are not required.

The second subpart has 3 points where the slope changes, but the networks H_i only have a single 2-dimensional ReLU node. Each application of ReLU to one element can only introduce a change of slope for a single value of x.

Both functions have two points where the slope changes, so none of the networks G_i ; H_1 , H_2 can represent them.

An output bias term is required for the first subpart because one of the flat regions must be generated by the flat part of a ReLU function, but neither one of them is at y = 0.

The second subpart doesn't require a bias term at the output: it can be represented as $-relu(\frac{-x+1}{2}) - relu(x+1)$. Note how if the segment at x > 2 were to be extended to cross the x axis, it would cross exactly at x = -1, the location of the other slope change. A similar statement is true for the segment at x < -1.