
CS 188
Spring 2024 Regular Discussion 12 Solutions

1 CalDining Bandits
You’re an excited new student who wants to know where to eat lunch at Berkeley! Every day at lunchtime, you
take action a to use your meal swipe at Crossroads (a = X), Cafe 3 (a = C), or Golden Bear Cafe (a = G) (the
other dining halls are too inconvenient). Let ai be the action you take on day i.

Suppose that the reward you get from croads (X) is uniformly distributed between −10 and 50, the reward you
get from Cafe 3 (C) is uniformly distributed between 0 and 30, and the reward you get from GBC (G) is always
15.

(a) What is the optimal value V ∗? Which dining hall has the best expected reward?

V ∗ = argmaxaE(r|a) = 20

The best action is to go to croads (hot take).

(b) What is the optimality gap ∆C for the action of going to Cafe 3 (C)?

Q(C) = E(r|C) = 15

∆C = V ∗ −Q(C) = 5

(c) Suppose Cafe 3 just happens to be right next to your dorm, so your policy is to always choose action C.
What is the timestep regret under this policy?

lt = E[V ∗ −Q(at)] = V ∗ −Q(C) = 5

(d) Now suppose you are indecisive, so your policy is to randomly choose a dining hall to go to each day.
What is the regret lt for one action under this policy?

lt = E[V ∗ −Q(at)]

= 1
3 (V

∗ −Q(X)) + 1
3 (V

∗ −Q(C)) + 1
3 (V

∗ −Q(G))

= 0 + 5
3 + 5

3

=
10

3

(e) Suppose you follow the random policy from the previous part for 5 days, taking actions X,C,C,G,X and
getting rewards 10, 20, 22, 18,−10. What is the total regret for this policy? (Hint: Trick question?)

In this class, regret is used to refer to ”expected suboptimality”, and total regret is also an expectation.
As such, the total regret is 5 times the result from the previous part, so

L5 =
50

3

Note that total regret doesn’t always have to be a linear multiplication of the regret for one step! If your
policy changes with time/new observations, your regret at each step might change as time goes on. For
example, using the UCB1 algorithm leads to logarithmic total regret.

(f) True or False: Using the UCB1 algorithm for this problem would lead to logarithmic total regret, after
enough days.

True, taken directly from lecture slides.

1



2 Neural Nets
Consider the following computation graph for a simple neural network for binary classification. Here x is a
single real-valued input feature with an associated class y∗ (0 or 1). There are two weight parameters w1 and
w2, and non-linearity functions g1 and g2 (to be defined later, below). The network will output a value a2
between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be
defined later, below), to compare the prediction a2 with the true class y∗.

x

w1

∗ g1

w2

∗ g2

y∗

Loss
z1 → a1 → z2 → a2 →

1. Perform the forward pass on this network, writing the output values for each node z1, a1, z2 and a2 in
terms of the node’s input values:

z1 = x ∗ w1

a1 = g1(z1)

z2 = a1 ∗ w2

a2 = g2(z2)

2. Compute the loss Loss(a2, y
∗) in terms of the input x, weights wi, and activation functions gi:

Recursively substituting the values computed above, we have:

Loss(a2, y
∗) = Loss(g2(w2 ∗ g1(w1 ∗ x)), y∗)

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive ∂Loss
∂w2

.
Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be
helpful; you may use any of those variables.)

∂Loss

∂w2
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂w2

2



4. Suppose the loss function is quadratic, Loss(a2, y
∗) = 1

2 (a2−y
∗)2, and g1 and g2 are both sigmoid functions

g(z) = 1
1+e−z (note: it’s typically better to use a different type of loss, cross-entropy, for classification

problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that ∂g(z)
∂z = g(z)(1− g(z)) for the sigmoid function, write

∂Loss
∂w2

in terms of the values from the forward pass, y∗, a1, and a2:

First we’ll compute the partial derivatives at each node:

∂Loss

∂a2
= (a2 − y∗)

∂a2
∂z2

=
∂g2(z2)

∂z2
= g2(z2)(1− g2(z2)) = a2(1− a2)

∂z2
∂w2

= a1

Now we can plug into the chain rule from part 3:

∂Loss

∂w2
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂w2

= (a2 − y∗) ∗ a2(1− a2) ∗ a1

5. Now use the chain rule to derive ∂Loss
∂w1

as a product of partial derivatives at each node used in the chain
rule:

∂Loss

∂w1
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w1

6. Finally, write ∂Loss
∂w1

in terms of x, y∗, wi, ai, zi: The partial derivatives at each node (in addition to the
ones we computed in Part 4) are:

∂z2
∂a1

= w2

∂a1
∂z1

=
∂g1(z1)

∂z1
= g1(z1)(1− g1(z1)) = a1(1− a1)

∂z1
∂a1

= x

Plugging into the chain rule from Part 5 gives:

∂Loss

∂w1
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w1

= (a2 − y∗) ∗ a2(1− a2) ∗ w2 ∗ a1(1− a1) ∗ x

7. What is the gradient descent update for w1 with step-size α in terms of the values computed above?

w1 ← w1 − α(a2 − y∗) ∗ a2(1− a2) ∗ w2 ∗ a1(1− a1) ∗ x

3


