## CS 188 Spring 2024 <br> Regular Discussion 12 Solutions

## 1 CalDining Bandits

You're an excited new student who wants to know where to eat lunch at Berkeley! Every day at lunchtime, you take action $a$ to use your meal swipe at Crossroads $(a=X)$, Cafe $3(a=C)$, or Golden Bear Cafe $(a=G)$ (the other dining halls are too inconvenient). Let $a_{i}$ be the action you take on day $i$.

Suppose that the reward you get from croads $(X)$ is uniformly distributed between -10 and 50 , the reward you get from Cafe $3(C)$ is uniformly distributed between 0 and 30 , and the reward you get from GBC $(G)$ is always 15.
(a) What is the optimal value $V^{*}$ ? Which dining hall has the best expected reward?
$V^{*}=\operatorname{argmax}_{a} E(r \mid a)=20$
The best action is to go to croads (hot take).
(b) What is the optimality gap $\Delta_{C}$ for the action of going to Cafe $3(C)$ ?
$Q(C)=E(r \mid C)=15$
$\Delta_{C}=V^{*}-Q(C)=5$
(c) Suppose Cafe 3 just happens to be right next to your dorm, so your policy is to always choose action $C$. What is the timestep regret under this policy?
$l_{t}=E\left[V^{*}-Q\left(a_{t}\right)\right]=V^{*}-Q(C)=5$
(d) Now suppose you are indecisive, so your policy is to randomly choose a dining hall to go to each day. What is the regret $l_{t}$ for one action under this policy?
$l_{t}=E\left[V^{*}-Q\left(a_{t}\right)\right]$
$=\frac{1}{3}\left(V^{*}-Q(X)\right)+\frac{1}{3}\left(V^{*}-Q(C)\right)+\frac{1}{3}\left(V^{*}-Q(G)\right)$
$=0+\frac{5}{3}+\frac{5}{3}$
$=\frac{10}{3}$
(e) Suppose you follow the random policy from the previous part for 5 days, taking actions $X, C, C, G, X$ and getting rewards $10,20,22,18,-10$. What is the total regret for this policy? (Hint: Trick question?)
In this class, regret is used to refer to "expected suboptimality", and total regret is also an expectation. As such, the total regret is 5 times the result from the previous part, so
$L_{5}=\frac{50}{3}$
Note that total regret doesn't always have to be a linear multiplication of the regret for one step! If your policy changes with time/new observations, your regret at each step might change as time goes on. For example, using the UCB1 algorithm leads to logarithmic total regret.
(f) True or False: Using the UCB1 algorithm for this problem would lead to logarithmic total regret, after enough days.
True, taken directly from lecture slides.

## 2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here $x$ is a single real-valued input feature with an associated class $y^{*}$ ( 0 or 1 ). There are two weight parameters $w_{1}$ and $w_{2}$, and non-linearity functions $g_{1}$ and $g_{2}$ (to be defined later, below). The network will output a value $a_{2}$ between 0 and 1 , representing the probability of being in class 1 . We will be using a loss function Loss (to be defined later, below), to compare the prediction $a_{2}$ with the true class $y^{*}$.


1. Perform the forward pass on this network, writing the output values for each node $z_{1}, a_{1}, z_{2}$ and $a_{2}$ in terms of the node's input values:

$$
\begin{aligned}
z_{1} & =x * w_{1} \\
a_{1} & =g_{1}\left(z_{1}\right) \\
z_{2} & =a_{1} * w_{2} \\
a_{2} & =g_{2}\left(z_{2}\right)
\end{aligned}
$$

2. Compute the loss $\operatorname{Loss}\left(a_{2}, y^{*}\right)$ in terms of the input $x$, weights $w_{i}$, and activation functions $g_{i}$ :

Recursively substituting the values computed above, we have:

$$
\operatorname{Loss}\left(a_{2}, y^{*}\right)=\operatorname{Loss}\left(g_{2}\left(w_{2} * g_{1}\left(w_{1} * x\right)\right), y^{*}\right)
$$

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial L o s s}{\partial w_{2}}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

$$
\frac{\partial \text { Loss }}{\partial w_{2}}=\frac{\partial \text { Loss }}{\partial a_{2}} \frac{\partial a_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial w_{2}}
$$

4. Suppose the loss function is quadratic, $\operatorname{Loss}\left(a_{2}, y^{*}\right)=\frac{1}{2}\left(a_{2}-y^{*}\right)^{2}$, and $g_{1}$ and $g_{2}$ are both sigmoid functions $g(z)=\frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, cross-entropy, for classification problems, but we'll use this to make the math easier).
Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z}=g(z)(1-g(z))$ for the sigmoid function, write $\frac{\partial \text { Loss }}{\partial w_{2}}$ in terms of the values from the forward pass, $y^{*}, a_{1}$, and $a_{2}$ :
First we'll compute the partial derivatives at each node:

$$
\begin{aligned}
\frac{\partial \text { Loss }}{\partial a_{2}} & =\left(a_{2}-y^{*}\right) \\
\frac{\partial a_{2}}{\partial z_{2}} & =\frac{\partial g_{2}\left(z_{2}\right)}{\partial z_{2}}=g_{2}\left(z_{2}\right)\left(1-g_{2}\left(z_{2}\right)\right)=a_{2}\left(1-a_{2}\right) \\
\frac{\partial z_{2}}{\partial w_{2}} & =a_{1}
\end{aligned}
$$

Now we can plug into the chain rule from part 3:

$$
\begin{aligned}
\frac{\partial \text { Loss }}{\partial w_{2}} & =\frac{\partial \operatorname{Loss}}{\partial a_{2}} \frac{\partial a_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial w_{2}} \\
& =\left(a_{2}-y^{*}\right) * a_{2}\left(1-a_{2}\right) * a_{1}
\end{aligned}
$$

5. Now use the chain rule to derive $\frac{\partial L o s s}{\partial w_{1}}$ as a product of partial derivatives at each node used in the chain rule:

$$
\frac{\partial \text { Loss }}{\partial w_{1}}=\frac{\partial \operatorname{Loss}}{\partial a_{2}} \frac{\partial a_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial a_{1}} \frac{\partial a_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}}
$$

6. Finally, write $\frac{\partial \text { Loss }}{\partial w_{1}}$ in terms of $x, y^{*}, w_{i}, a_{i}, z_{i}$ : The partial derivatives at each node (in addition to the ones we computed in Part 4) are:

$$
\begin{aligned}
& \frac{\partial z_{2}}{\partial a_{1}}=w_{2} \\
& \frac{\partial a_{1}}{\partial z_{1}}=\frac{\partial g_{1}\left(z_{1}\right)}{\partial z_{1}}=g_{1}\left(z_{1}\right)\left(1-g_{1}\left(z_{1}\right)\right)=a_{1}\left(1-a_{1}\right) \\
& \frac{\partial z_{1}}{\partial a_{1}}=x
\end{aligned}
$$

Plugging into the chain rule from Part 5 gives:

$$
\begin{aligned}
\frac{\partial \text { Loss }}{\partial w_{1}} & =\frac{\partial \text { Loss }}{\partial a_{2}} \frac{\partial a_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial a_{1}} \frac{\partial a_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}} \\
& =\left(a_{2}-y^{*}\right) * a_{2}\left(1-a_{2}\right) * w_{2} * a_{1}\left(1-a_{1}\right) * x
\end{aligned}
$$

7. What is the gradient descent update for $w_{1}$ with step-size $\alpha$ in terms of the values computed above?

$$
w_{1} \leftarrow w_{1}-\alpha\left(a_{2}-y^{*}\right) * a_{2}\left(1-a_{2}\right) * w_{2} * a_{1}\left(1-a_{1}\right) * x
$$

