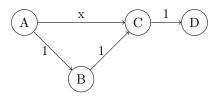
CS 188 Introduction to Spring 2024 Artificial Intelligence

Solutions for HW 7B $\,$

Q1. [20 pts] Markov Decision Process

Throughout this homework, we use V(s) to denote the value of a state. This is the same as U(s) used in lecture to denote the utility of a state. "Value" and "utility" mean the same thing in a Markov decision process.

(a) [5 pts] Consider the following deterministic MDP with four states A, B, C and D:

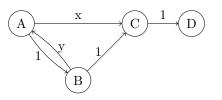


The edges designate actions between states, the weights on those edges are the rewards, and the discount factor is $\gamma = 1$. Let k be the **first** iteration of Value Iteration at which the value function converges for some x for a particular state (i.e. $V_k(s) = V^*(s)$). Use the convention from lecture where $V_0(s)$ is the value at initialization, $V_1(s)$ is the value after one iteration, etc. For each state A, B, C, and D, list **all** possible values of k. In the case a value function for a particular state never converges, set $k = \infty$ for that state.

(a) State A, $k = \boxed{\begin{array}{c} 2 \text{ and } 3 \end{array}}$ (b) State B, $k = \boxed{\begin{array}{c} 2 \end{array}}$ (c) State C, $k = \boxed{\begin{array}{c} 1 \end{array}}$ (d) State D, $k = \boxed{\begin{array}{c} 0 \end{array}}$

C will find its optimal value in one iteration. B will find its optimal value one iteration after that (2 iterations total). A will find its optimal value one iteration after C (2 iterations total) or one iteration after B (3 iterations total), depending on the value of x.

(b) Now consider the following deterministic MDP with four states A, B, C and D:



The edges designate actions between states, the weights on those edges are the rewards, and the discount factor is again $\gamma = 1$. Furthermore assume that $x, y \ge 0$.

- (i) [5 pts] Let k be the first iteration of Value Iteration for some nonnegative x and y at which the value function converges for a particular state $(V_k(s) = V^*(s))$. For each state A, B, C and D list all possible values of k. In case a value for a particular state never converges set $k = \infty$ for that state.
 - (a) State A, k =
 - \sim
 - (b) State B, k =
 - (c) State C, k =

(d) State D, k =

A and B will never find their optimal value because they can get infinite value. C and D are the same as above.

(ii) [6 pts] Suppose we perform Policy Iteration and that k is the first iteration for which the policy is optimal for a particular state (i.e. $\pi_k(s) = \pi^*(s)$). On top of $x, y \ge 0$ also assume that x + y < 1 and that tie-breaking during policy improvement is alphabetical. The initial policy is given in the table below.

State s	Policy $\pi_0(s)$
А	С
В	С
С	D
D	D

For each state A, B, C and D, find k; if the policy never converges set $k = \infty$ for that state.

(a) State A, $k = \boxed{1}$ (b) State B, $k = \boxed{2}$ (c) State C, $k = \boxed{0}$ (d) State D, $k = \boxed{0}$ First, evaluate π_0 :

$$\begin{aligned} V^{\pi_0}(D) &= 0 \\ \Rightarrow V^{\pi_0}(C) &= 1 + V^{\pi_0}(D) = 1 \\ \Rightarrow V^{\pi_0}(B) &= 1 + V^{\pi_0}(C) = 2 \\ \Rightarrow V^{\pi_0}(A) &= x + V^{\pi_0}(C) = x + 1 \end{aligned}$$

Now do policy improvement to obtain π_1 :

$$\pi_1(D) = D$$

$$\pi_1(C) = D$$

$$\pi_1(B) = \operatorname{argmax}_{A,C} \{A : x + y + 1, C : 2\} = C$$

$$\pi_1(A) = \operatorname{argmax}_{B,C} \{B : 3, C : x + 1\} = B$$

Now, evaluate π_1 :

$$V^{\pi_1}(D) = 0$$

$$\Rightarrow V^{\pi_1}(C) = 1 + V^{\pi_1}(D) = 1$$

$$\Rightarrow V^{\pi_1}(B) = 1 + V^{\pi_1}(C) = 2$$

$$\Rightarrow V^{\pi_1}(A) = 1 + V^{\pi_1}(B) = 3$$

Now run policy improvement to obtain π_2 :

$$\pi_{2}(D) = D$$

$$\pi_{2}(C) = D$$

$$\pi_{2}(B) = \operatorname{argmax}_{A,C} \{A : y + 3, C : 2\} = A$$

$$\pi_{2}(A) = \operatorname{argmax}_{B,C} \{B : 3, C : x + 1\} = B$$

Observe that this policy is optimal, because the value $V^{\pi_2}(A) = V^{\pi_2}(B) = \infty$. The other values are trivially optimal because the agent has only one choice of action.

Th following two questions are conceptual.

- (c) [2 pts] Which of the following statements are guaranteed to be correct for any MDP? Select all that apply.
 - There exists a state s and some policy π such that $V^{\pi}(s) \leq V^{*}(s)$.
 - \Box There does not exist a state s such that for all policies π , $V^{\pi}(s) \leq V^{*}(s)$.
 - For all states s and for all policies π , $V^{\pi}(s) \leq V^{*}(s)$.
 - \bigcirc None of the above.

By definition of the optimal policy and value function, $V^{\pi}(s) \leq V^{*}(s)$ for all states s and all policies π . All the other answers can be derived from this fact.

(d) [2 pts] Which of the following statements are guaranteed to be correct for Value Iteration? Select all that apply.

- \Box At each iteration, and for all states, the value at the next iteration is \geq the value at the current iteration. At each iteration, and for all states, the value at the next iteration is > the value at the current iteration.
- At each iteration, the value function can be lower than the earlier values for some state.
- Once the value function is optimal at all states, value iteration will not change any value at any state.
- \bigcirc None of the above.

Before convergence, the values can fluctuate. Once the value function is optimal, it has converged.