
Announcements

§ Project 0 (optional) is due Friday, January 19, 11:59 PM PT
§ HW0 (optional) is due Tuesday, January 23, 11:59 PM PT
§ Project 1 is due Friday, February 2, 11:59 PM PT
§ HW1 is due Tuesday, February 6, 11:59 PM PT
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Today

§ Agents that Plan Ahead

§ Search Problems

§ Uninformed Search Methods
§ Depth-First Search
§ Breadth-First Search
§ Uniform-Cost Search



Agents that Plan



Reflex Agents

§ Reflex agents:
§ Choose action based on current percept (and 

maybe memory)
§ May have memory or a model of the world’s 

current state
§ Do not consider the future consequences of 

their actions
§ Consider how the world IS

§ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]



Video of Demo Reflex Optimal



Video of Demo Reflex Odd 



Planning Agents

§ Planning agents:
§ Ask “what if”
§ Decisions based on (hypothesized) 

consequences of actions
§ Must have a model of how the world evolves in 

response to actions
§ Must formulate a goal (test)
§ Consider how the world WOULD BE

§ Optimal vs. complete planning

§ Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]



Video of Demo Replanning



Video of Demo Mastermind



Search Problems



Search Problems

§ A search problem consists of:

§ A state space

§ A successor function
(with actions, costs)

§ A start state and a goal test

§ A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



Search Problems Are Models



Example: Traveling in Romania

§ State space:
§ Cities

§ Successor function:
§ Roads: Go to adjacent city with 

cost = distance

§ Start state:
§ Arad

§ Goal test:
§ Is state == Bucharest?

§ Solution?



What’s in a State Space?

§ Problem: Pathing
§ States: (x,y) location
§ Actions: NSEW
§ Successor: update location 

only
§ Goal test: is (x,y)=END

§ Problem: Eat-All-Dots
§ States: {(x,y), dot booleans}
§ Actions: NSEW
§ Successor: update location 

and possibly a dot boolean
§ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)



State Space Sizes?

§ World state:
§ Agent positions: 120
§ Food count: 30
§ Ghost positions: 12
§ Agent facing: NSEW

§ How many
§ World states?

120x(230)x(122)x4
§ States for pathing?

120
§ States for eat-all-dots?

120x(230)



Quiz: Safe Passage

§ Problem: eat all dots while keeping the ghosts perma-scared
§ What does the state space have to specify?

§ (agent position, dot booleans, power pellet booleans, remaining scared time)



State Space Graphs and Search Trees



State Space Graphs

§ State space graph: A mathematical 
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only 
once!

§ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea



State Space Graphs

§ State space graph: A mathematical 
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only 
once!

§ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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Search Trees

§ A search tree:
§ A “what if” tree of plans and their outcomes
§ The start state is the root node
§ Children correspond to successors
§ Nodes show states, but correspond to PLANS that achieve those states
§ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



State Space Graphs vs. Search Trees
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Search TreeState Space Graph



Quiz: State Space Graphs vs. Search Trees
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Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?
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Tree Search



Search Example: Romania



Searching with a Search Tree

§ Search:
§ Expand out potential plans (tree nodes)
§ Maintain a fringe of partial plans under consideration
§ Try to expand as few tree nodes as possible



General Tree Search

§ Important ideas:
§ Fringe
§ Expansion
§ Exploration strategy

§ Main question: which fringe nodes to explore?



Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r



Example: Tree Search
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Depth-First Search



Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a 
deepest node first

Implementation: 
Fringe is a LIFO stack



Search Algorithm Properties



Search Algorithm Properties

§ Complete: Guaranteed to find a solution if one exists?
§ Optimal: Guaranteed to find the least cost path?
§ Time complexity?
§ Space complexity?

§ Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ solutions at various depths

§ Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers



Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

§ What nodes DFS expand?
§ Some left prefix of the tree.
§ Could process the whole tree!
§ If m is finite, takes time O(bm)

§ How much space does the fringe take?
§ Only has siblings on path to root, so O(bm)

§ Is it complete?
§ m could be infinite, so only if we prevent 

that

§ Is it optimal?
§ No, it finds the “leftmost” solution, 

regardless of depth or cost



Breadth-First Search



Breadth-First Search
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Breadth-First Search (BFS) Properties

§ What nodes does BFS expand?
§ Processes all nodes above shallowest solution
§ Let depth of shallowest solution be s
§ Search takes time O(bs)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bs)

§ Is it complete?
§ s must be finite if a solution exists, so yes!

§ Is it optimal?
§ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Quiz: DFS vs BFS



Quiz: DFS vs BFS

§ When will BFS outperform DFS?

§ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]



Video of Demo Maze Water DFS/BFS (part 1)



Video of Demo Maze Water DFS/BFS (part 2)



Iterative Deepening

…
b

§ Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages
§ Run a DFS with depth limit 1.  If no solution…
§ Run a DFS with depth limit 2.  If no solution…
§ Run a DFS with depth limit 3.  …..

§ Isn’t that wastefully redundant?
§ Generally most work happens in the lowest 

level searched, so not so bad!
§ Branching factor 10, solution 5 deep:

§ BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
§ IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.  We will now cover
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

§ What nodes does UCS expand?
§ Processes all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the 

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bC*/e)

§ Is it complete?
§ Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

§ Is it optimal?
§ Yes!  (Proof next lecture via A*)

b

C*/e  “tiers”
c £ 3

c £ 2
c £ 1



Uniform Cost Issues

§ Remember: UCS explores increasing cost 
contours

§ The good: UCS is complete and optimal!

§ The bad:
§ Explores options in every “direction”
§ No information about goal location

§ We’ll fix that soon!

Start Goal

…

c £ 3
c £ 2

c £ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow 
water DFS/BFS/UCS (L2D7)]



Video of Demo Contours UCS Pacman Small Maze



Video of Demo Empty UCS



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)



The One Queue

§ All these search algorithms are the 
same except for fringe strategies
§ Conceptually, all fringes are priority 

queues (i.e. collections of nodes with 
attached priorities)

§ Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

§ Can even code one implementation 
that takes a variable queuing object



Comparing uninformed search algorithms


