
Announcements

§ Project 0 (optional) is due Friday, January 19, 11:59 PM PT
§ HW0 (optional) is due Tuesday, January 23, 11:59 PM PT
§ Project 1 is due Friday, February 2, 11:59 PM PT
§ HW1 is due Tuesday, February 6, 11:59 PM PT

CS 188: Artificial Intelligence

Search

Spring 2024

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Today

§ Agents that Plan Ahead

§ Search Problems

§ Uninformed Search Methods
§ Depth-First Search
§ Breadth-First Search
§ Uniform-Cost Search

Agents that Plan

Reflex Agents

§ Reflex agents:
§ Choose action based on current percept (and

maybe memory)
§ May have memory or a model of the world’s

current state
§ Do not consider the future consequences of

their actions
§ Consider how the world IS

§ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

§ Planning agents:
§ Ask “what if”
§ Decisions based on (hypothesized)

consequences of actions
§ Must have a model of how the world evolves in

response to actions
§ Must formulate a goal (test)
§ Consider how the world WOULD BE

§ Optimal vs. complete planning

§ Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

§ A search problem consists of:

§ A state space

§ A successor function
(with actions, costs)

§ A start state and a goal test

§ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Example: Traveling in Romania

§ State space:
§ Cities

§ Successor function:
§ Roads: Go to adjacent city with

cost = distance

§ Start state:
§ Arad

§ Goal test:
§ Is state == Bucharest?

§ Solution?

What’s in a State Space?

§ Problem: Pathing
§ States: (x,y) location
§ Actions: NSEW
§ Successor: update location

only
§ Goal test: is (x,y)=END

§ Problem: Eat-All-Dots
§ States: {(x,y), dot booleans}
§ Actions: NSEW
§ Successor: update location

and possibly a dot boolean
§ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

§ World state:
§ Agent positions: 120
§ Food count: 30
§ Ghost positions: 12
§ Agent facing: NSEW

§ How many
§ World states?

120x(230)x(122)x4
§ States for pathing?

120
§ States for eat-all-dots?

120x(230)

Quiz: Safe Passage

§ Problem: eat all dots while keeping the ghosts perma-scared
§ What does the state space have to specify?

§ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

§ State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only
once!

§ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

§ State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only
once!

§ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

§ A search tree:
§ A “what if” tree of plans and their outcomes
§ The start state is the root node
§ Children correspond to successors
§ Nodes show states, but correspond to PLANS that achieve those states
§ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

§ Search:
§ Expand out potential plans (tree nodes)
§ Maintain a fringe of partial plans under consideration
§ Try to expand as few tree nodes as possible

General Tree Search

§ Important ideas:
§ Fringe
§ Expansion
§ Exploration strategy

§ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd e

r

S

d e p

e

h r

f

c G

b c

s
s à d
s à e
s à p
s à d à b
s à d à c
s à d à e
s à d à e à h
s à d à e à r
s à d à e à r à f
s à d à e à r à f à c
s à d à e à r à f à G

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

§ Complete: Guaranteed to find a solution if one exists?
§ Optimal: Guaranteed to find the least cost path?
§ Time complexity?
§ Space complexity?

§ Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ solutions at various depths

§ Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

§ What nodes DFS expand?
§ Some left prefix of the tree.
§ Could process the whole tree!
§ If m is finite, takes time O(bm)

§ How much space does the fringe take?
§ Only has siblings on path to root, so O(bm)

§ Is it complete?
§ m could be infinite, so only if we prevent

that

§ Is it optimal?
§ No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

§ What nodes does BFS expand?
§ Processes all nodes above shallowest solution
§ Let depth of shallowest solution be s
§ Search takes time O(bs)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bs)

§ Is it complete?
§ s must be finite if a solution exists, so yes!

§ Is it optimal?
§ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Quiz: DFS vs BFS

§ When will BFS outperform DFS?

§ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

…
b

§ Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
§ Run a DFS with depth limit 1. If no solution…
§ Run a DFS with depth limit 2. If no solution…
§ Run a DFS with depth limit 3. …..

§ Isn’t that wastefully redundant?
§ Generally most work happens in the lowest

level searched, so not so bad!
§ Branching factor 10, solution 5 deep:

§ BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
§ IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

§ What nodes does UCS expand?
§ Processes all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bC*/e)

§ Is it complete?
§ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

§ Is it optimal?
§ Yes! (Proof next lecture via A*)

b

C*/e “tiers”
c £ 3

c £ 2
c £ 1

Uniform Cost Issues

§ Remember: UCS explores increasing cost
contours

§ The good: UCS is complete and optimal!

§ The bad:
§ Explores options in every “direction”
§ No information about goal location

§ We’ll fix that soon!

Start Goal

…

c £ 3
c £ 2

c £ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Contours UCS Pacman Small Maze

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

§ All these search algorithms are the
same except for fringe strategies
§ Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

§ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

§ Can even code one implementation
that takes a variable queuing object

Comparing uninformed search algorithms

