
Announcements

§ Project 0 (optional) was due Friday, January 19, 11:59 PM PT
§ HW0 (optional) is due tonight! Tuesday, January 23, 11:59 PM PT
§ HW1 is due Tuesday, January 30, 11:59 PM PT
§ Project 1 is due Friday, February 2, 11:59 PM PT
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Today

§ Informed Search
§ Heuristics
§ Greedy Search
§ A* Search

§ Graph Search



Recap: Search



Recap: Search

§ Search problem:
§ States (configurations of the world)
§ Actions and costs
§ Successor function (world dynamics)
§ Start state and goal test

§ Search tree:
§ Nodes: represent plans for reaching states
§ Plans have costs (sum of action costs)

§ Search algorithm:
§ Systematically builds a search tree
§ Chooses an ordering of the fringe (unexplored nodes)
§ Optimal: finds least-cost plans



Example: Pancake Problem

Cost: Number of pancakes flipped



Example: Pancake Problem



Example: Pancake Problem
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General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7



Informed Search



Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Examples: Manhattan distance, Euclidean distance for 

pathing
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Example: Heuristic Function

h(x)



Example: Heuristic Function
Heuristic: the number of the largest pancake that is still out of place
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Greedy Search



Greedy Search

§ Expand the node that seems closest…

§ What can go wrong?



Greedy Search

§ Strategy: expand a node that you think is 
closest to a goal state
§ Heuristic: estimate of distance to nearest goal for 

each state

§ A common case:
§ Best-first takes you straight to the (wrong) goal

§ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)] 
[Demo: contours greedy pacman small maze (L3D4)]



Video of Demo Contours Greedy (Empty)



Video of Demo Contours Greedy (Pacman Small Maze)



A* Search



A* Search

UCS Greedy

A*



Uniform-Cost Search

Example: Teg Grenager
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Greedy Search

Example: Teg Grenager
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Combining UCS and Greedy

§ Uniform-cost orders by path cost, or backward cost  g(n)
§ Greedy orders by goal proximity, or forward cost  h(n)

§ A* Search orders by the sum: f(n) = g(n) + h(n)
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Combining UCS and Greedy

§ Uniform-cost orders by path cost, or backward cost  g(n)
§ Greedy orders by goal proximity, or forward cost  h(n)

§ A* Search orders by the sum: f(n) = g(n) + h(n)
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When should A* terminate?

§ Should we stop when we enqueue a goal?

§ No: only stop when we dequeue a goal
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Is A* Optimal?

§ What went wrong?
§ Actual bad goal cost < estimated good goal cost
§ We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

S

A G

f=0+7

f = 1+6 f = 5+0



Admissible Heuristics



Idea: Admissibility

Inadmissible (pessimistic) heuristics break 
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down 
bad plans but never outweigh true costs



Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:

where               is the true cost to a nearest goal

§ Examples:

§ Coming up with admissible heuristics is most of what’s involved 
in using A* in practice.
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Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:
§ A is an optimal goal node
§ B is a suboptimal goal node
§ h is admissible

Claim:

§ A will exit the fringe before B

…



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the 

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

…



Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)
§ Definition of f-cost says:

f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

§ The admissible heuristic must underestimate the true cost
h(A) = (est. cost of A to A) = 0

§ So now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

§ h(n) must be an underestimate of the true cost from n to A 
(path cost to n) + (est. cost of n to A) ≤ (path cost to A)
g(n) + h(n) ≤ g(A)
f(n) ≤ f(A)

…



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the 

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

…



Optimality of A* Tree Search: Blocking

2. f(A) is less than f(B)
§ We know that:

f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

§ The heuristic must underestimate the true cost:
h(A) = h(B) = 0

§ So now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)

§ We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)
g(A) < g(B)
f(A) < f(B)

…



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the 

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

§ All ancestors of A expand before B
§ A expands before B
§ A* search is optimal

…



Properties of A*



Properties of A*

…
b

…
b

Uniform-Cost A*



UCS vs A* Contours

§ Uniform-cost expands equally in all 
“directions”

§ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]



Video of Demo Contours (Empty) -- UCS



Video of Demo Contours (Empty) -- Greedy



Video of Demo Contours (Empty) – A*



Video of Demo Contours (Pacman Small Maze) – A*



Comparison

Greedy Uniform Cost A*



A* Applications

§ Video games
§ Pathing / routing problems
§ Resource planning problems
§ Robot motion planning
§ Language analysis
§ Machine translation
§ Speech recognition
§ …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]



Video of Demo Pacman (Tiny Maze) – UCS / A*



Video of Demo Empty Water Shallow/Deep – Guess Algorithm



Creating Heuristics



Creating Admissible Heuristics

§ Most of the work in solving hard search problems optimally is in coming up 
with admissible heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new 
actions are available

§ Inadmissible heuristics are often useful too

15
366



Example: 8 Puzzle

§ What are the states?
§ How many states?
§ What are the actions?
§ How many successors from the start state?
§ What should the costs be?

Start State Goal StateActions



8 Puzzle I

§ Heuristic: Number of tiles misplaced
§ Why is it admissible?
§ h(start) =
§ This is a relaxed-problem heuristic

8

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II

§ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles?

§ Total Manhattan distance

§ Why is it admissible?

§ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State



8 Puzzle III

§ How about using the actual cost as a heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§ With A*: a trade-off between quality of estimate and work per node
§ As heuristics get closer to the true cost, you will expand fewer nodes but usually 

do more work per node to compute the heuristic itself



Semi-Lattice of Heuristics



Trivial Heuristics, Dominance

§ Dominance: ha ≥ hc if

§ Heuristics form a semi-lattice:
§ Max of admissible heuristics is admissible

§ Trivial heuristics
§ Bottom of lattice is the zero heuristic (what 

does this give us?)
§ Top of lattice is the exact heuristic



Graph Search



§ Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph

Tree Search: Extra Work!



Graph Search

§ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a



Graph Search

§ Idea: never expand a state twice

§ How to implement: 
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never been 

expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness?  Why/why not?

§ How about optimality?



A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

§ Consequences of consistency:

§ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

§ A* graph search is optimal
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Optimality of A* Graph Search



Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible
§ UCS is a special case (h = 0)

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)

§ Consistency implies admissibility

§ In general, most natural admissible heuristics 
tend to be consistent, especially if from 
relaxed problems



A*: Summary



A*: Summary

§ A* uses both backward costs and (estimates of) forward costs

§ A* is optimal with admissible / consistent heuristics

§ Heuristic design is key: often use relaxed problems



Search and Models

§ Search operates over 
models of the world
§ The agent doesn’t 

actually try all the plans 
out in the real world!

§ Planning is all “in 
simulation”

§ Your search is only as 
good as your models…



Search Gone Wrong?



Search Gone Wrong?



Appendix: Search Pseudo-Code



Tree Search Pseudo-Code



Graph Search Pseudo-Code


