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Today

" Informed Search
= Heuristics
" Greedy Search
= A* Search

" Graph Search




Recap: Search




Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans



Example: Pancake Problem

Cost: Number of pancakes flipped



Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL
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For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.




Example: Pancake Problem

State space graph with costs as weights
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General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

A ( -
Action: flip top two A{  Path to reach goal:
Cost: 2 Flip four, flip three

/ l Total cost: 7
>




Informed Search




Search Heuristics

= A heuristicis:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

Heuristi — Tron J
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Example: Heuristic Function
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Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place




Greedy Search




Greedy Search

Sibiu  gg Fagaras

Rimnicu Vilcea

Timisoara

= Expand the node that seems closest...
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= What can go wrong?




Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]



Video of Demo Contours Greedy (Empty)




Video of Demo Contours Greedy (Pacman Small Maze)




A* Search




A* Search




Uniform-Cost Search

Example: Teg Grenager



Greedy Search

Example: Teg Grenager



Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

o e
2 e 3 f=4+0
(&)

h=1

= No: only stop when we dequeue a goal

B f=0+3
H f=2+1
E f=5+0



Is A* Optimal?

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!



Admissible Heuristics

Heuristi = Tron




ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs



Admissible Heuristics
= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h™(n)

where h*(n) isthe true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.




Optimality of A* Tree Search




Optimality of A* Tree Search

Assume:
= Aisan optimal goal node

= Bisasuboptimal goal node
= hisadmissible

Claim:

= A will exit the fringe before B



Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)




Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)

= Definition of f-cost says:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

= The admissible heuristic must underestimate the true cost A
h(A) = (est. costof Ato A) =0

= So now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

®= h(n) must be an underestimate of the true cost from n to A
(path cost to n) + (est. cost of n to A) < (path cost to A)

g(n) + h(n) < g(A)
f(n) < f(A)

-——




Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)




Optimality of A* Tree Search: Blocking

2. f(A) is less than f(B)

= We know that:
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of Ato A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

= The heuristic must underestimate the true cost:
h(A)=h(B)=0
= So now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)
= We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)

g(A) < g(B)
f(A) < f(B)




Proof:

Optimality of A* Tree Search: Blocking

Imagine B is on the fringe

Some ancestor n of A is on the
fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. nexpands before B
All ancestors of A expand before B
A expands before B
A* search is optimal



Properties of A*



Properties of A*

Uniform-Cost

A*




UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]



Video of Demo Contours (Empty) -- UCS




Video of Demo Contours (Empty) -- Greedy




Video of Demo Contours (Empty) — A*




Video of Demo Contours (Pacman Small Maze) — A*




Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*



A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]



Video of Demo Pacman (Tiny Maze) — UCS / A*
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Video of Demo Empty Water Shallow/Deep — Guess Algorithm
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Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!




Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too



Example: 8 Puzzle
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What are the states?
How many states?
What are the actions?

How many successors from the start state?
What should the costs be?
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8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore




What if we had an easier 8-puzzle where
any tile could slide any direction at any

time, ignoring other tiles?

Total Manhattan distance

Why is it admissible?

h(start)= 3+1+2+..=18

8 Puzzle

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73




8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What's wrong with it? ﬁ rt

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself




Semi-Lattice of Heuristics



Trivial Heuristics, Dominance

= Dominance: h, 2 h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

mazx(hg, hy)



Graph Search




Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \
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Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

" |dea: never expand a state twice

= How to implement:

"= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

" |mportant: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?



A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{s B }
S (0+2)
SA (1+4) SB (1+1)

TN

SBC (3+1)  SBS (2+2)




A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBC }
S (0+2)
SA (1+4) SB (1+1)
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A* Graph Search Gone Wrong?

State space graph Search tree Closed set
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A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBCG !
S (0+2)

SA (1+4) SB (1+1)

.
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Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal



Optimality of A* Graph Search




Optimality

Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems




A*: Summary




A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

,

e




Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...




Search Gone Wrong?
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Search Gone Wrong?
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Appendix: Search Pseudo-Code



Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end




Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem]|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




