Announcements

Project O (optional) was due Friday, January 19, 11:59 PM PT
HWO (optional) is due tonight! Tuesday, January 23, 11:59 PM PT
HW1 is due Tuesday, January 30, 11:59 PM PT

Project 1 is due Friday, February 2, 11:59 PM PT

CS 188: Artificial Intelligence

Informed Search

Fall 2022

University of California, Berkeley

Today

" Informed Search
= Heuristics
" Greedy Search
= A* Search

" Graph Search

Recap: Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

—

— 4

I

N
‘
W

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

A (-
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

/ l Total cost: 7
>

Informed Search

Search Heuristics

= A heuristicis:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

Heuristi — Tron J

75

Arad [

Example: Heuristic Function

[] Vaslui

Timisoara

142

11 Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

= Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬂtra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
850
199
374

J

h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Greedy Search

Sibiu gg Fagaras

Rimnicu Vilcea

Timisoara

= Expand the node that seems closest...

[} Mehadia

75
Arad

Dobreta []

Eforie

329 374

380 193

366

CSibiu Db Guchared

253 0

= What can go wrong?

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Uniform-Cost Search

Example: Teg Grenager

Greedy Search

Example: Teg Grenager

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

o e
2 e 3 f=4+0
(&)

h=1

= No: only stop when we dequeue a goal

B f=0+3
H f=2+1
E f=5+0

Is A* Optimal?

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

Heuristi = Tron

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h™(n)

where h*(n) isthe true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
= Aisan optimal goal node

= Bisasuboptimal goal node
= hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)

= Definition of f-cost says:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

= The admissible heuristic must underestimate the true cost A
h(A) = (est. costof Ato A) =0

= So now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

®= h(n) must be an underestimate of the true cost from n to A
(path cost to n) + (est. cost of n to A) < (path cost to A)

g(n) + h(n) < g(A)
f(n) < f(A)

-——

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

Optimality of A* Tree Search: Blocking

2. f(A) is less than f(B)

= We know that:
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of Ato A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

= The heuristic must underestimate the true cost:
h(A)=h(B)=0
= So now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)
= We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)

g(A) < g(B)
f(A) < f(B)

Proof:

Optimality of A* Tree Search: Blocking

Imagine B is on the fringe

Some ancestor n of A is on the
fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. nexpands before B
All ancestors of A expand before B
A expands before B
A* search is optimal

Properties of A*

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) — UCS / A*

= Pydev - Echpse

File Edit Navigate Search Project Run Window |Help

[3~ D ~9- v ¥ v v v v Sl P‘vu:'L- & Team
'DJ 1 search demo emnply
? e‘ 2 search -« cortaurs greedy vs ucs (greedy d
: & 3 search -- contours greedy vs ucs (ucs c=
@ A4 search -- contours greedy vs ucs (astar)
e‘ 5 search - plan tiny astar
@‘ 6 search -- pﬁas tiny ucs
@ 7 vearch -« grikdy bad
eA 8 search - greedy good
& 9sesrch demo maz
@ search demp costs

Run As »
Run l'nr.!wr'].;r:.'lrrn'.

Organize Favorites

[Console B % kil 2 B v v

<terminated> empty.oe

1

11:53 AM

a8/30/2012

Video of Demo Empty Water Shallow/Deep — Guess Algorithm

= Pydey - [chipsa =
File Edit Nawvigste Search Project Run Window |lelp
= - 5~ 0 Q- - - - - - - T [Pyder | A° Team
1 search -- plan Lny astar [
ol 2 search -~ plan tiny ucs | 8

.
aon

3 search demo empty .
4 search -« contours greedy vs ucs i'_"'ggl,h

S search -« cantours greedy vs ucs (ucs

6 search -- contours greedy vs ucs (astar)
[search < greedy bad

8 search -« greedy good

9 search dems maze

AL L L)

search d\gne costs

4-#

Run As »
Run l‘-wmql.mr.r-r‘.

Organize Favorites

[J) Console B Pl ow) [t @M
<terminated> 1 5

<2%Tal cost: 2 .
Nunbey of nodea expanded: 1872

Nunber of unigue nodes

Facman emerges victorious

' numi 2’ 0 'yosulta® 27], 'scorea’ 573

11:54 AM
&/30/2012

i

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too

Example: 8 Puzzle

7 2 |4 7)1
s 6 \2[%[5
8 3 1 i8N 6

Start State Actions

3
2

1@“

~7.

———

I —

What are the states?
How many states?
What are the actions?

How many successors from the start state?
What should the costs be?

1
4

3
&

p)
>
79

Goal State

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore

What if we had an easier 8-puzzle where
any tile could slide any direction at any

time, ignoring other tiles?

Total Manhattan distance

Why is it admissible?

h(start)= 3+1+2+..=18

8 Puzzle

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What's wrong with it? ﬁ rt

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

= Dominance: h, 2 h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

mazx(hg, hy)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

s N
() P
B @0 ..,-f"” .

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e P
/\ |
b/jg h r q
| /\@ |
r f
- ®O L
f q c G
N |
G a

C
I
a

Graph Search

" |dea: never expand a state twice

= How to implement:

"= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

" |mportant: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{s B }
S (0+2)
SA (1+4) SB (1+1)

TN

SBC (3+1) SBS (2+2)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBC }
S (0+2)
SA (1+4) SB (1+1)

‘e
G
o
G
.
.
G
G
G
G
.
.,
..A

SBC (3+1) -SBSH2+2

T

SBCG (6+0) SBCB (5+1)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBC }
S (0+2)
SA (1+4) SB (1+1)

‘e
G
o
G
.
.
G
G
G
G
.
.,
..A

SAC (2+1) SBC (3+1) -SBSH2+2)

SBCG (6+0) -SBEB-HS+H-

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBCG !
S (0+2)

SA (1+4) SB (1+1)

.
‘™,
...
*
* ‘e,
o ‘e
- e,
‘ A

SAE2+H- SBC(3+1) -SBSH+3)-

SBCG (6+0) -SBEB-HS+H-

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

Optimality

Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

,

e

Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...

Search Gone Wrong?

Wi'ochw 5

T —— Y [e].91,] ‘
" T ' ; Microsoft*
- MAPQVEST. - |- - 2 A %y MapPomt
o a X ;
! | ig & g5 — ICELAND
et BB \F ¥ -
/pBrierAve g © & B o
| >SS E @ - ATLANTIC 4
@ < Qe 2
\= o) o s QCEAN T
1L > o hetsinki verc
,m | ig @ 2 5 1 P esmg 15t :
5 & 5° o
m 9 % IN Edinburgv
3 ' ? Blal?'stokc;' BELARUS)/
; o = Ktev"
E n_7 POLAND 1(;

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

Search Gone Wrong?

— T T —)
P GRS Microsoft*
ARCTIC OCEAN % 1. MapPoint'
\1'\ y
-'.._\

WT
=
2202}
|
|azwns]

MO
[ePH
S ¢
e

ICELAND
f_ '-."_.'.-.-.
-y 7. RUSSIA
! O Y
: 0)“;‘ 'é H kal Tverc
i o elsingfors’)
Stagkhol Riga . ™
- ® Smoblensk . .
Epagteol) @
Vilnius Ry

LT A

-

a
/GNv‘mud

-

H (5
¥ Biatystok é'BELARUS}f
poLanp 5, Kievy

“%7 km 500
Ch— oz
'96_‘(' mi 2000 400 y

/ Start: Haugesund, Rogaland, Norway

» 2005 MapQ .com, Inc. End: Trondheim, Ser-Trandelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no/allridmdro

Appendix: Search Pseudo-Code

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem]|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

