Announcements

- HW1 is due Tuesday, January 30, 11:59 PM PT
- Project 1 is due Friday, February 2, 11:59 PM PT

Pre-scan attendance QR code now!

(Password appears later)

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] [Updated slides from: Stuart Russell and Dawn Song]

Recap: Search Heuristics

- A heuristic is:
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - Examples: Manhattan distance, Euclidean distance for pathing

Recap: Cost- vs. Heuristic-Guided Search

Uniform-Cost Search (only costs, g)

Greedy Best-First Search (only heuristic, h)

A* Search (both, f=g+h)

Recap: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Recap: 8-Puzzle

Start State

Designing a Heuristic: Knight's moves

- Minimum number of knight's moves to get from S to G?
 - h₁ = (Manhattan distance)/3
 - $h_1' = h_1$ rounded up to correct parity (even if S, G same color, odd otherwise)
 - $h_2 = (\text{Euclidean distance})/\sqrt{5}$
 - $h_2' = h_2$ rounded up to correct parity
 - *h*₃ = (maximum horizontal or vertical distance)/2
 - $h_3' = h_3$ rounded up to correct parity
- $h(n) = \max(h_1'(n), h_2'(n), h_3'(n))$ is admissible!

Recap: Optimality of A* Tree Search

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.

Graph Search

Graph Search

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

A* Graph Search Gone Wrong?

A* Graph Search Gone Wrong?

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \leq actual \operatorname{cost} h^* \operatorname{from} A \operatorname{to} G$

Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(A) - h(C) \le cost(A to C)$

- a.k.a. "triangle inequality": $h(A) \le cost(A \text{ to } C) + h(C)$
- Note: true cost h* <u>necessarily</u> satisfies triangle inequality
- Consequences of consistency:
 - The f value along a path never decreases

 $h(A) \le cost(A to C) + h(C)$

A* graph search is optimal

A* Graph Search with Consistent Heuristic

Consistency => non-decreasing f-score

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

But...

- A* keeps the entire explored region in memory
- => will run out of space before you get bored waiting for the answer

- There are variants that use less memory (Section 3.5.5):
 - IDA* works like iterative deepening, except it uses an *f*-limit instead of a depth limit
 - On each iteration, remember the smallest *f*-value that exceeds the current limit, use as new limit
 - Very inefficient when *f* is real-valued and each node has a unique value
 - RBFS is a recursive depth-first search that uses an *f*-limit = the *f*-value of the best alternative path available from any ancestor of the current node
 - When the limit is exceeded, the recursion unwinds but remembers the best reachable *f*-value on that branch
 - SMA* uses all available memory for the queue, minimizing thrashing
 - When full, drop worst node on the queue but remember its value in the parent

Search and Models

- Search operates over models of the world
 - The agent doesn't actually try all the plans out in the real world!
 - Planning is all "in simulation"
 - Your search is only as good as your models...

Search Gone Wrong?

Search Gone Wrong?

Tree Search Pseudo-Code

Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE node is not in closed then
           add STATE[node] to closed
           for child-node in EXPAND(STATE[node], problem) do
               fringe \leftarrow \text{INSERT}(child-node, fringe)
           end
   end
```

Local Search

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] [Updated slides from: Stuart Russell and Dawn Song]

Local search algorithms

- In many optimization problems, *path* is irrelevant; the goal state *is* the solution
- Then state space = set of "complete" configurations; find configuration satisfying constraints, e.g., n-queens problem; or, find optimal configuration, e.g., travelling salesperson problem

- In such cases, can use *iterative improvement* algorithms: keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search
- More or less unavoidable if the "state" is yourself (i.e., learning)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

Heuristic for *n*-queens problem

- Goal: n queens on board with no *conflicts*, i.e., no queen attacking another
- States: n queens on board, one per column
- Actions: move a queen in its column
- Heuristic value function: number of conflicts

h = 5

h = 0

Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
 current ← make-node(problem.initial-state)
 loop do

neighbor ← a highest-valued successor of current
if neighbor.value ≤ current.value then
 return current.state
current ← neighbor

"Like climbing Everest in thick fog with amnesia"

Global and local maxima

Hill-climbing on the 8-queens problem

No sideways moves:

- Succeeds w/ prob. 0.14
- Average number of moves per trial:
 - 4 when succeeding, 3 when getting stuck
- Expected total number of moves needed:
 - 3(1-p)/p + 4 =~ 22 moves
- Allowing 100 sideways moves:
 - Succeeds w/ prob. 0.94
 - Average number of moves per trial:
 - 21 when succeeding, 65 when getting stuck
 - Expected total number of moves needed:
 - 65(1-p)/p + 21 =~ 25 moves

Simulated annealing

- Resembles the annealing process used to cool metals slowly to reach an ordered (low-energy) state
- Basic idea:
 - Allow "bad" moves occasionally, depending on "temperature"
 - High temperature => more bad moves allowed, shake the system out of its local minimum
 - Gradually reduce temperature according to some schedule
 - Sounds pretty flaky, doesn't it?

Simulated annealing algorithm

- function SIMULATED-ANNEALING(problem, schedule) returns a state
- current ← problem.initial-state
- for t = 1 to ∞ do
 - $T \leftarrow schedule(t)$
 - if T = 0 then return current
 - $\mathsf{next} \leftarrow \mathsf{a} \text{ randomly selected successor of } \mathsf{current}$
 - $\Delta E \leftarrow next.value current.value$
 - **if** $\Delta E > 0$ **then** current \leftarrow next
 - else current \leftarrow next only with probability $e^{\Delta E/T}$

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution (Boltzmann): $P(x) \propto e^{E(x)/T}$
 - If T decreased slowly enough, will converge to optimal state!
- Proof sketch
 - Consider two adjacent states x, y with E(y) > E(x) [high is good]
 - Assume $x \rightarrow y$ and $y \rightarrow x$ and outdegrees D(x) = D(y) = D
 - Let P(x), P(y) be the equilibrium occupancy probabilities at T
 - Let $P(x \rightarrow y)$ be the probability that state x transitions to state y

Occupation probability as a function of T

Simulated Annealing

- Is this convergence an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - "Slowly enough" may mean exponentially slowly
 - Random restart hillclimbing also converges to optimal state...
- Simulated annealing and its relatives are a key workhorse in VLSI layout and other optimal configuration problems

Local beam search

- Basic idea:
 - K copies of a local search algorithm, initialized randomly
 - For each iteration
 - Generate ALL successors from K current states
 - Choose best K of these to be the new current states

Or, K chosen randomly with a bias towards good ones

Beam search example (K=4)

Local beam search

- Why is this different from *K* local searches in parallel?
 - The searches communicate! "Come over here, the grass is greener!"
- What other well-known algorithm does this remind you of?
 - Evolution!

Genetic algorithms

- Genetic algorithms use a natural selection metaphor
 - Resample K individuals at each step (selection) weighted by fitness function
 - Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

- Does crossover make sense here?
- What would mutation be?
- What would a good fitness function be?

Local search in continuous spaces

Example: Placing airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Handling a continuous state/action space

1. Discretize it!

- Define a grid with increment δ , use any of the discrete algorithms
- 2. Choose random perturbations to the state
 - a. First-choice hill-climbing: keep trying until something improves the state
 - b. Simulated annealing
- 3. Compute gradient of $f(\mathbf{x})$ analytically

Finding extrema in continuous space

- Gradient vector $\nabla f(\mathbf{x}) = (\partial f / \partial x_1, \partial f / \partial y_1, \partial f / \partial x_2, ...)^{\mathsf{T}}$
- For the airports, $f(\mathbf{x}) = \sum_a \sum_{c \in C_a} (x_a x_c)^2 + (y_a y_c)^2$
- $\partial f/\partial x_1 = \sum_{c \in C_1} 2(x_1 x_c)$
- At an extremum, $\nabla f(\mathbf{x}) = 0$
- Can sometimes solve in closed form: $x_1 = (\sum_{c \in C_1} x_c) / |C_1|$
 - Is this a local or global minimum of f?
- If we can't solve $\nabla f(\mathbf{x}) = 0$ in closed form...
 - Gradient descent: $\mathbf{x} \leftarrow \mathbf{x} \alpha \nabla f(\mathbf{x})$
- Huge range of algorithms for finding extrema using gradients

Summary

- Many configuration and optimization problems can be formulated as local search
- General families of algorithms:
 - Hill-climbing, continuous optimization
 - Simulated annealing (and other stochastic methods)
 - Local beam search: multiple interaction searches
 - Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches