Announcements

= HW1 is due Tuesday, January 30,
11:59 PM PT

(3] 3 p s [m]

" Project 1is due Friday, February 2,
11:59 PM PT

[=]

Pre-scan attendance QR code now!

(Password appears later)

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
[Updated slides from: Stuart Russell and Dawn Song]

Recap: Search Heuristics

= A heuristicis:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

Heuristi - Tron J

Recap: Cost- vs. Heuristic-Guided Search

—

Uniform-Cost Search Greedy Best-First Search
(only costs, g) (only heuristic, h)

G

———

A* Search
(both, f=g+h)

Recap: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Start State

Recap: 8-Puzzle

7|1
45
81 6

12
3|5
6 7 |8®
Goal State

Designing a Heuristic: Knight’s moves

" Minimum number of knight’s moves to get from S to G?

* h, =(Manhattan distance)/3
= h, = h;rounded up to correct parity (even if S, G same color, odd otherwise)

= h, = (Euclidean distance)/V/5

= h, = h,rounded up to correct parity

* h, =(maximum horizontal or vertical distance)/2

= h; = hyrounded up to correct parity

= h(n) =max(h,(n), h, (n), hs (n)) is admissible!

Recap: Optimality of A* Tree Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

s N
() P
B @0 ..,-f"” .

Graph Search

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e P
/\ |
b/jg h r q
| /\@ |
r f
- ®O L
f q c G
N |
G a

C
I
a

Graph Search

" |dea: never expand a state twice

= How to implement:

"= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

" |mportant: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{s B }
S (0+2)
SA (1+4) SB (1+1)

TN

SBC (3+1) SBS (2+2)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{s B }
S (0+2)
SA (1+4) SB (1+1)

TN

SBC (3+1) -SBSH2+2

@ SBCA (4+4) SBCG (6+0) SBCB (5+1)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{SBCA }
S (0+2)
SA (1+4) SB (1+1)

' TN

—SAE+H SBC(3+1) -SBSH3+3)-

e .

SBCA (4+4) ((SBCG (6+0)) -SBEBHS+H-

Consistency of Heuristics

* Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost h* from Ato G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)
= a.k.a. “triangle inequality”: h(A) < cost(A to C) + h(C)

= Note: true cost h* necessarily satisfies triangle inequality

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

A* Graph Search with Consistent Heuristic

State space graph Search tree Closed set
{sBAC }
S (0+2)
SA(1+2) SB(1+1)

SAC(2+1)

3
h=1
SACG(5+O)
h=0

Consistency => non-decreasing f-score

Inconsistent Consistent
S (0+2) S (0+2)
SA (1+4) SB (1+1) SA (1+2) SB (1+1)
/ /\ — / /\
A+ SBC (3+1) -SBSH+2- SAC (2+1) -SBE3+H- -SBSH2+2

SBCA (4+4) @CG (6@ SBEBH{5+—+ %&%

SACBt4+H

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

But...

A* keeps the entire explored region in memory
=> will run out of space before you get bored waiting for the answer (&

There are variants that use less memory (Section 3.5.5):
= |IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit

= On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit
= Very inefficient when fis real-valued and each node has a unique value
= RBFSis a recursive depth-first search that uses an f-limit = the f-value of the best
alternative path available from any ancestor of the current node

= When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on
that branch

= SMA* uses all available memory for the queue, minimizing thrashing
= When full, drop worst node on the queue but remember its value in the parent

Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...

Search Gone Wrong?

Wi'ochw 5

T —— Y [e].91,] ‘
" T ' ; Microsoft*
- MAPQVEST. - |- - 2 A %y MapPomt
o a X ;
! | ig & g5 — ICELAND
et BB \F ¥ -
/pBrierAve g © & B o
| >SS E @ - ATLANTIC 4
@ < Qe 2
\= o) o s QCEAN T
1L > o hetsinki verc
,m | ig @ 2 5 1 P esmg 15t :
5 & 5° o
m 9 % IN Edinburgv
3 ' ? Blal?'stokc;' BELARUS)/
; o = Ktev"
E n_7 POLAND 1(;

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

Search Gone Wrong?

— T T —)
P GRS Microsoft*
ARCTIC OCEAN % 1. MapPoint'
\1'\ y
-'.._\

WT
=
2202}
|
|azwns]

MO
[ePH
S ¢
e

ICELAND
f_ '-."_.'.-.-.
-y 7. RUSSIA
! O Y
: 0)“;‘ 'é H kal Tverc
i o elsingfors’)
Stagkhol Riga . ™
- ® Smoblensk . .
Epagteol) @
Vilnius Ry

LT A

-

a
/GNv‘mud

-

H (5
¥ Biatystok é'BELARUS}f
poLanp 5, Kievy

“%7 km 500
Ch— oz
'96_‘(' mi 2000 400 y

/ Start: Haugesund, Rogaland, Norway

» 2005 MapQ .com, Inc. End: Trondheim, Ser-Trandelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no/allridmdro

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem]|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

Local Search

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]
[Updated slides from: Stuart Russell and Dawn Song]

Local search algorithms

In many optimization problems, path is irrelevant; the goal state is the solution

Then state space = set of “complete” configurations;
find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

In such cases, can use iterative improvement algorithms: keep a single “current”
state, try to improve it

Constant space, suitable for online as well as offline search
More or less unavoidable if the “state” is yourself (i.e., learning)

Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
" |If no neighbors better than current, quit

Heuristic for n-queens problem

= Goal: n queens on board with no conflicts, i.e., no queen attacking another
= States: n queens on board, one per column

= Actions: move a queen in its column

= Heuristic value function: number of conflicts

=

=

Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current < make-node(problem.initial-state)
loop do
neighbor < a highest-valued successor of current
if neighbor.value < current.value then
return current.state
current < neighbor

“Like climbing Everest in thick fog with amnesia”

Global and local maxima

= find global optimum

_— e~

objectife function /\/QlObal maximum Random restarts

@ = duh
shoulder
\ local maximum Random sideways moves

"flat" local maximum = Escape from shoulders
= Loop forever on flat

o o
K/j local maxima

»State space
current

state

Hill-climbing on the 8-queens problem

= No sideways moves:

= Succeeds w/ prob. 0.14

" Average number of moves per trial:
= 4 when succeeding, 3 when getting stuck

" Expected total number of moves needed:

= 3(1-p)/p + 4 =~ 22 moves
= Allowing 100 sideways moves:

= Succeeds w/ prob. 0.94

" Average number of moves per trial:
= 21 when succeeding, 65 when getting stuck

" Expected total number of moves needed:

= 65(1-p)/p + 21 =~ 25 moves

Moral: algorithms with knobs
to twiddle are irritating

Simulated annealing

" Resembles the annealing process used to cool metals slowly to
reach an ordered (low-energy) state

" Basic idea:

= Allow “bad” moves occasionally, depending on “temperature”

" High temperature => more bad moves allowed, shake the system out of
its local minimum

® Gradually reduce temperature according to some schedule
= Sounds pretty flaky, doesn’t it?

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a state
current & problem.initial-state
fort=1to-~do

T &schedule(t)
if T=0 then return current
next < a randomly selected successor of current

AE & next.value — current.value
if AE > 0 then current & next

else current & next only with probability e2E/T

Simulated Annealing

" Theoretical guarantee:

= Stationary distribution (Boltzmann): P(x) o efX/T
= |f T decreased slowly enough, will converge to optimal state!
" Proof sketch
= Consider two adjacent states x, y with E(y) > E(x) [high is good]
= Assume x—>y and y—x and outdegrees D(x) = D(y) = D

= Let P(x), P(y) be the equilibrium occupancy probabilities at T
= Let P(x—y) be the probability that state x transitions to state y

E(x)

Occupation probability as a function of T

Simulated Annealing

" |s this convergence an interesting guarantee?

= Sounds like magic, but reality is reality:

®= The more downhill steps you need to escape a local optimum,
the less likely you are to ever make them all in a row

= “Slowly enough” may mean exponentially slowly
= Random restart hillclimbing also converges to optimal state...

= Simulated annealing and its relatives are a key
workhorse in VLSI layout and other optimal
configuration problems

Local beam search

= Basic idea:
= K copies of a local search algorithm, initialized randomly

= For each iteration
= Generate ALL successors from K current states

= Choosd best Klof these to be the new current states

Or, K chosen randomly with
a bias towards good ones

Beam search example (K=4)

/ 9 7 10
8 0<:¢<:: O

9 8

o > Q. P
. O<Q<:8 e O

9O ~~~~~~ 10 e

S, e 5 10 . .
7 o<:8 -o<:g O

Local beam search

= Why is this different from K local searches in parallel?

" The searches communicate! “Come over here, the grass is greener!”

* What other well-known algorithm does this remind you of?

= Evolution!

Genetic algorithms

24748552 |24 31% 327§52411 32748552 3274802
32752411 %ﬁ: 247@48552 >—< 24752411 24752411
24415124 20\26%‘ 327.52§411 32752124 3252124
32543213 | 11 14% 244155124 >_< 24415411 2441541[7]

Fithess Selection

Pairs

Cross—Over

= Genetic algorithms use a natural selection metaphor

= Resample K individuals at each step (selection) weighted by fitness function
= Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

= Does crossover make sense here?
= \What would mutation be?
= What would a good fitness function be?

Local search in continuous spaces

Example: Placing airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Oradea Airport locations
Neamt X= (X1;y1); (XZIyZ)r (X31y3)
| 87
' _ A 1asi City locations (x_,y,)
Arad g
1 -
‘,—.,2 92
; = g9 Fagaras == “*~~~~ C, = cities closest to airport a
118 = e = :
,, ‘:~~~~~ %0 Vaslui
- QB\I‘ ~=~. \ Rimnicu Vilcea Objective: minimize
\
\ _ _ 2 _ 2
11 \\ : Lugoi Pitesti \>!! o flx) = Za ZCEC&? (Xa XC) * (ya yc)
\ ugoj
\
‘\}Q \\ %8 Hirsova
\ M Mehadia lbk\ ¢ Urziceni» =
-
X 138 -~ 86
Drobeta 120

G, et

Craiova Giurgiu

Handling a continuous state/action space

1. Discretize it!

= Define a grid with increment o, use any of the discrete algorithms

2. Choose random perturbations to the state

a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

Gradient vector Vf(x) = (0f/0x,, Of/0y,, Of/0x,, ...)!
For the airports, f(x) =X, Z..c_ (X5 - X)* + (V5 - Vc)?
Of/0x1=Zcc, 2(X; - X,)

At an extremum, Vf(x) =

Can sometimes solve in closed form: x; = (X .., x.)/| G|
" |s this a local or global minimum of f?

If we can’t solve Vf(x) =0 in closed form...

* Gradient descent: x < x - aVf(x)

Huge range of algorithms for finding extrema using gradients

Summary

" Many configuration and optimization problems can be
formulated as local search
= General families of algorithms:
= Hill-climbing, continuous optimization
* Simulated annealing (and other stochastic methods)
" Local beam search: multiple interaction searches

" Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

