
Announcements

§ HW1 is due Tuesday, January 30, 
11:59 PM PT

§ Project 1 is due Friday, February 2, 
11:59 PM PT

Pre-scan attendance QR code now!
(Password appears later)

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Recap: Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Examples: Manhattan distance, Euclidean distance for 

pathing
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Recap: Cost- vs. Heuristic-Guided Search

Uniform-Cost Search
(only costs, g)

Greedy Best-First Search
(only heuristic, h)

A* Search
(both, f=g+h)



Recap: Admissibility

Inadmissible (pessimistic) heuristics break 
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down 
bad plans but never outweigh true costs



Recap: 8-Puzzle

Start State Goal StateActions



Designing a Heuristic: Knight’s moves

§ Minimum number of knight’s moves to get from S to G?
§ h1 = (Manhattan distance)/3 

§ h1
’ = h1 rounded up to correct parity (even if S, G same color, odd otherwise)

§ h2 = (Euclidean distance)/ 5
§ h2

’ = h2 rounded up to correct parity

§ h3 = (maximum horizontal or vertical distance)/2
§ h3

’ = h3 rounded up to correct parity

§ h(n) = max( h1
’(n), h2

’ (n), h3
’ (n)) is admissible!
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Recap: Optimality of A* Tree Search



§ Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph

Tree Search: Extra Work!



Graph Search



Graph Search

§ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

§ Idea: never expand a state twice

§ How to implement: 
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never been 

expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness?  Why/why not?

§ How about optimality?



A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost h* from A to G

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

§ a.k.a. “triangle inequality”: h(A) ≤ cost(A to C) + h(C)

§ Note: true cost h* necessarily satisfies triangle inequality

§ Consequences of consistency:

§ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

§ A* graph search is optimal
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A* Graph Search with Consistent Heuristic
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Consistency => non-decreasing f-score

Inconsistent
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Optimality of A* Graph Search

§ Sketch: consider what A* does with a 
consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in 
increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach 
s optimally are expanded before nodes 
that reach s suboptimally

§ Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1



Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible
§ UCS is a special case (h = 0)

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)

§ Consistency implies admissibility

§ In general, most natural admissible heuristics 
tend to be consistent, especially if from 
relaxed problems



But…

§ A* keeps the entire explored region in memory
§ => will run out of space before you get bored waiting for the answer
§ There are variants that use less memory (Section 3.5.5):

§ IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit
§ On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit
§ Very inefficient when f is real-valued and each node has a unique value

§ RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best 
alternative path available from any ancestor of the current node 
§ When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on 

that branch

§ SMA* uses all available memory for the queue, minimizing thrashing
§ When full, drop worst node on the queue but remember its value in the parent

☹



Search and Models

§ Search operates over 
models of the world
§ The agent doesn’t 

actually try all the plans 
out in the real world!

§ Planning is all “in 
simulation”

§ Your search is only as 
good as your models…



Search Gone Wrong?



Search Gone Wrong?



Tree Search Pseudo-Code



Graph Search Pseudo-Code



Local Search

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Local search algorithms

§ In many optimization problems, path is irrelevant; the goal state is the solution 
§ Then state space = set of “complete” configurations;

find configuration satisfying constraints, e.g., n-queens problem; or, find 
optimal configuration, e.g., travelling salesperson problem 

§ In such cases, can use iterative improvement algorithms: keep a single “current” 
state, try to improve it 

§ Constant space, suitable for online as well as offline search
§ More or less unavoidable if the “state” is yourself (i.e., learning) 



Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit



HeurisUc for n-queens problem

§ Goal: n queens on board with no conflicts, i.e., no queen attacking another
§ States: n queens on board, one per column
§ Actions: move a queen in its column
§ Heuristic value function: number of conflicts



Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current ← make-node(problem.initial-state) 
loop do 

neighbor ← a highest-valued successor of current
if neighbor.value ≤ current.value then

return current.state
current ← neighbor

“Like climbing Everest in thick fog with amnesia” 



Global and local maxima
Random restarts

§ find global optimum
§ duh

Random sideways moves
§ Escape from shoulders
§ Loop forever on flat 

local maxima😕

☺



Hill-climbing on the 8-queens problem
§ No sideways moves:

§ Succeeds w/ prob. 0.14
§ Average number of moves per trial:

§ 4 when succeeding, 3 when getting stuck
§ Expected total number of moves needed:

§ 3(1-p)/p + 4 =~ 22 moves

§ Allowing 100 sideways moves:
§ Succeeds w/ prob. 0.94
§ Average number of moves per trial:

§ 21 when succeeding, 65 when getting stuck
§ Expected total number of moves needed:

§ 65(1-p)/p + 21 =~ 25 moves

Moral: algorithms with knobs
 to twiddle are irritating



Simulated annealing

§ Resembles the annealing process used to cool metals slowly to 
reach an ordered (low-energy) state

§ Basic idea: 
§ Allow “bad” moves occasionally, depending on “temperature”
§ High temperature => more bad moves allowed, shake the system out of 

its local minimum
§ Gradually reduce temperature according to some schedule
§ Sounds pretty flaky, doesn’t it?



Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a  state 
current ← problem.initial-state 
for t = 1 to ∞ do

T ←schedule(t)
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← next.value – current.value
if ∆E > 0 then current ← next

else current ← next only with probability e∆E/T



Simulated Annealing

§ Theoretical guarantee:
§ Stationary distribution (Boltzmann): P(x) a eE(x)/T

§ If T decreased slowly enough, will converge to optimal state!
§ Proof sketch 

§ Consider two adjacent states x, y with E(y) > E(x) [high is good]
§ Assume x®y and y®x and outdegrees D(x) = D(y) = D
§ Let P(x), P(y) be the equilibrium occupancy probabilities at T
§ Let P(x®y) be the probability that state x transitions to state y

x y



Occupation probability as a function of T



Simulated Annealing

§ Is this convergence an interesting guarantee?

§ Sounds like magic, but reality is reality:
§ The more downhill steps you need to escape a local optimum, 

the less likely you are to ever make them all in a row
§ “Slowly enough” may mean exponentially slowly
§ Random restart hillclimbing also converges to optimal state…

§ Simulated annealing and its relatives are a key 
workhorse in VLSI layout and other optimal 
configuration problems



Local beam search

§ Basic idea:
§ K copies of a local search algorithm, inidalized randomly
§ For each iteradon

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

Or, K chosen randomly with 
a bias towards good ones



Beam search example (K=4)
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Local beam search

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evoludon!



Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety



Example: N-Queens

§ Does crossover make sense here?
§ What would mutation be?
§ What would a good fitness function be?



Local search in continuous spaces



Example: Placing airports in Romania
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Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport loca[ons 
 x = (x1,y1), (x2,y2), (x3,y3)

City loca[ons (xc,yc)

Ca = ci[es closest to airport a

Objec[ve: minimize
 f(x) = Sa ScÎCa (xa - xc)

2 + (ya - yc)2 



Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing 

3. Compute gradient of f(x) analytically



Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can sometimes solve in closed form: x1 = (ScÎC1 xc)/|C1|

§ Is this a local or global minimum of f?

§ If we can’t solve Ñf(x) = 0 in closed form…
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients



§ Many configuration and optimization problems can be 
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary


