
Announcements

§ HW1 is due Tuesday, January 30,
11:59 PM PT

§ Project 1 is due Friday, February 2,
11:59 PM PT

§ HW2 is due Tuesday, February 6,
11:59 PM PT

Pre-scan a*endance QR code now!
(Password appears later)

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at hIp://ai.berkeley.edu.]

Recap: Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors be*er than current, quit

Recap: Local beam search

§ Basic idea:
§ K copies of a local search algorithm, ini5alized randomly
§ For each itera5on

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

Random restarts, parallel search, & beam search

7

9

7

8

10

9

8

t=0
9

t=1
8

t=2

8

t=3
9

t=4
10

t=5

9
7

6

8 8

9

3
t=6 t=7 t=8

6

7

7

7 3

9

9
t=9 t=10 t=11

9

9

Random restarts

Random restarts, parallel search, & beam search

7

9

8

7

9

9

6

7

7

9

10

3

8

10

5

9

9

7

9

6

9

8

7

7

9

7

8

9

10

3

3

9

8

8

7

6

t=0

t=0

t=0

t=0

9

9

8

7

t=1

t=1

t=1

t=1

10

9

9

8
t=2

t=2

t=2

t=2

8

8

7

6

t=0

t=0

t=0

t=0

9

9

9

8

t=1

t=1

t=1

t=1

10

10

9

9

t=2

t=2

t=2

t=2

Parallel search Beam search

Gene<c algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

§ Does crossover make sense here?
§ What would muta5on be?
§ What would a good fitness func5on be?

Local search in continuous spaces

Example: Si<ng airports in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport loca+ons
 x = (x1,y1), (x2,y2), (x3,y3)

City loca+ons (xc,yc)

Ca = ci+es closest to airport a

Objec+ve: minimize
 f(x) = Sa ScÎCa (xa - xc)

2 + (ya - yc)2

Handling a con<nuous state/ac<on space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in con<nuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can someSmes solve in closed form: x1 = (ScÎC1 xc)/|C1|
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients

§ Many configuration and optimization problems can be
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary

Games: Minimax and Alpha-Beta Pruning

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at hIp://ai.berkeley.edu.]

Outline

§ History / Overview

§ Minimax for Zero-Sum Games

§ α-β Pruning

§ Finite lookahead and evaluaUon

Game Playing State of the Art
§ Checkers:

§ 1950: First computer player
§ 1959: Samuel’s self-taught program
§ 1995: First computer world champion*
§ 2007: Checkers solved!

§ Chess:
§ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.
§ 1960-1996: gradual improvements
§ 1997: Deep Blue defeats human champion Garry Kasparov
§ 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

§ Go:
§ 1968: Zobrist’s program plays legal Go, barely (b>300!)
§ 1968-2005: various ad hoc approaches tried, novice level
§ 2005-2014: Monte Carlo tree search -> strong amateur
§ 2016-2017: AlphaGo defeats human world champions
§ 2022: Human exploits NN weakness to defeat top Go programs

§ Pacman

Behavior from Computa<on

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

Adversarial Games

§ Game = task environment with > 1 agent
§ Axes:

§ DeterminisUc or stochasUc?
§ Perfect informaUon (fully observable)?
§ Two, three, or more players?
§ Teams or individuals?
§ Turn-taking or simultaneous?
§ Zero sum?

§ Want algorithms for calcula5ng a strategy (policy) which recommends a
move from every possible state

Types of Games

Deterministic Games

§ Many possible formaliza5ons, one is:
§ States: S (start at s0)
§ Players: P={1…N} (usually take turns)
§ AcUons: A (may depend on player/state)
§ TransiUon funcUon: S x A → S
§ Terminal test: S → {true, false}
§ Terminal uUliUes: S x P → R

§ Solu5on for a player is a policy: S → A

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite u+li+es
§ Pure compe++on:

§ One maximizes, the other minimizes

§ General-Sum Games
§ Agents have independent u+li+es
§ Coopera+on, indifference, compe++on,

shiBing alliances, and more are all possible

§ Team Games
§ Common payoff for all team members

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable

outcome (uUlity)
from that state

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

§ Determinis)c, zero-sum games:
§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax value:

the best achievable u)lity against a
ra)onal (op)mal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementa<on

def min-value(state):
iniUalize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementa<on (Dispatch)

def value(state):
if the state is a terminal state: return the state’s uUlity
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
iniUalize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
iniUalize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

Minimax Proper<es

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

Handling games with 3+ players

Mul<-Agent U<li<es

§ What if the game is not zero-sum, or has mulUple players?

§ GeneralizaUon of minimax:
§ Terminals have u+lity tuples
§ Node values are also u+lity tuples
§ Each player maximizes its own component
§ Can give rise to coopera+on and

compe++on dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Emergent coordina<on in ghosts

Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole

tree?

Resource Limits

Game Tree Pruning

Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters:
more pruning is possible if good moves come first

Alpha-Beta Pruning

§ General case (pruning children of MIN node)
§ We’re compu+ng the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s es+mate of the childrens’ min is dropping
§ Who cares about n’s value? MAX
§ Let α be the best value that MAX can get so far at any

choice point along the current path from the root

§ If n becomes worse than α, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

§ Pruning children of MAX node is symmetric
§ Let β be the best value that MIN can get so far at any

choice point along the current path from the root

MAX

MIN

MAX

MIN

α

n

Alpha-Beta Implementa<on

def min-value(state , α, β):
iniUalize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
iniUalize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Proper<es

§ This pruning has no effect on minimax value computed for the root!

§ Values of intermediate nodes might be wrong
§ Important: children of the root may have the wrong value
§ So the most naïve version won’t let you do ac+on selec+on

§ Good child ordering improves effecUveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is s+ll hopeless…

§ This is a simple example of metareasoning (compuUng about what to compute)

10 10 0

max

min

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Resource Limits

Resource Limits

§ Problem: In realisUc games, cannot search to leaves!

§ SoluUon: Depth-limited search
§ Instead, search only to a limited depth in the tree
§ Replace terminal u+li+es with an evalua+on func+on for

non-terminal posi+ons

§ Example:
§ Suppose we have 100 seconds, can explore 10K nodes / sec
§ So can check 1M nodes per move
§ a-b reaches about depth 8 – decent chess program

§ Guarantee of opUmal play is gone

§ More plies makes a BIG difference

§ Use iteraUve deepening for an anyUme algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evalua<on Func<ons

Evalua<on Func<ons
§ EvaluaUon funcUons score non-terminals in depth-limited search

§ Ideal funcUon: returns the actual minimax value of the posiUon
§ In pracUce: typically weighted linear sum of features:

§ E.g. f1(s) = (num white queens – num black queens), etc.
§ Or a more complex nonlinear funcUon (e.g., NN) trained by self-play RL

Evalua<on for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluaPon funcPon), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

§ A danger of replanning agents!
§ He knows his score will go up by ea)ng the dot now (west, east)
§ He knows his score will go up just as much by ea)ng the dot later (east, west)
§ There are no point-scoring opportuni)es aIer ea)ng the dot (within the horizon, d=2)
§ Therefore, wai)ng seems just as good as ea)ng: he may go east, then back west in the next

round of replanning!

t=0 t=1

Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluaPon funcPon) (L6D7)]

Depth Ma\ers

§ Evaluation functions are always
imperfect

§ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

§ An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Synergies between Evalua2on Func2on and Alpha-Beta?

§ Alpha-Beta: amount of pruning depends on expansion ordering
§ EvaluaUon funcUon can provide guidance to expand most promising nodes first

(which later makes it more likely there is already a good alternaUve on the path to
the root)
§ (somewhat similar to role of A* heuris+c, CSPs filtering)

§ Alpha-Beta: (similar for roles of min-max swapped)
§ Value at a min-node will only keep going down
§ Once value of min-node lower than be*er opUon for max along path to root, can

prune
§ Hence: IF evaluaUon funcUon provides upper-bound on value at min-node, and

upper-bound already lower than be*er opUon for max along path to root
THEN can prune

Summary

§ Games are decision problems with ³ 2 agents
§ Huge variety of issues and phenomena depending on details of interac)ons and payoffs

§ For zero-sum games, op:mal decisions defined by minimax
§ Simple extension to n-player “rota)ng” max with vectors of u)li)es
§ Implementable as a depth-first traversal of the game tree
§ Time complexity O(bm), space complexity O(bm)

§ Alpha-beta pruning
§ Preserves op)mal choice at the root
§ Alpha/beta values keep track of best obtainable values from any max/min nodes on path

from root to current node
§ Time complexity drops to O(bm/2) with ideal node ordering

§ Exact solu:on is impossible even for “small” games like chess

Next Time: Uncertainty!

