Announcements

- HW1 is due Tuesday, January 30, 11:59 PM PT
- Project 1 is due Friday, February 2, 11:59 PM PT
- HW2 is due Tuesday, February 6, 11:59 PM PT

Pre-scan attendance QR code now!

(Password appears later)

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] [Updated slides from: Stuart Russell and Dawn Song]

Recap: Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

Recap: Local beam search

- Basic idea:
 - K copies of a local search algorithm, initialized randomly
 - For each iteration
 - Generate ALL successors from K current states
 - Choose best K of these to be the new current states

Random restarts, parallel search, & beam search

Random restarts, parallel search, & beam search

Genetic algorithms

- Genetic algorithms use a natural selection metaphor
 - Resample K individuals at each step (selection) weighted by fitness function
 - Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

- Does crossover make sense here?
- What would mutation be?
- What would a good fitness function be?

Local search in continuous spaces

Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Handling a continuous state/action space

1. Discretize it!

- Define a grid with increment δ , use any of the discrete algorithms
- 2. Choose random perturbations to the state
 - a. First-choice hill-climbing: keep trying until something improves the state
 - b. Simulated annealing
- 3. Compute gradient of $f(\mathbf{x})$ analytically

Finding extrema in continuous space

- Gradient vector $\nabla f(\mathbf{x}) = (\partial f/\partial x_1, \partial f/\partial y_1, \partial f/\partial x_2, ...)^{\mathsf{T}}$
- For the airports, $f(\mathbf{x}) = \sum_a \sum_{c \in C_a} (x_a x_c)^2 + (y_a y_c)^2$
- $\partial f/\partial x_1 = \sum_{c \in C_1} 2(x_1 x_c)$
- At an extremum, $\nabla f(\mathbf{x}) = 0$
- Can sometimes solve in closed form: $x_1 = (\sum_{c \in C_1} x_c) / |C_1|$
- Is this a local or global minimum of *f*?
- Gradient descent: $\mathbf{x} \leftarrow \mathbf{x} \alpha \nabla f(\mathbf{x})$
 - Huge range of algorithms for finding extrema using gradients

Summary

- Many configuration and optimization problems can be formulated as local search
- General families of algorithms:
 - Hill-climbing, continuous optimization
 - Simulated annealing (and other stochastic methods)
 - Local beam search: multiple interaction searches
 - Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Games: Minimax and Alpha-Beta Pruning

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] [Updated slides from: Stuart Russell and Dawn Song]

Outline

- History / Overview
- Minimax for Zero-Sum Games
- α - β Pruning
- Finite lookahead and evaluation

Game Playing State of the Art

Goo

Pacman

Behavior from Computation

Video of Demo Mystery Pacman

Adversarial Games

Types of Games

- Game = task environment with > 1 agent
- Axes:
 - Deterministic or stochastic?
 - Perfect information (fully observable)?
 - Two, three, or more players?
 - Teams or individuals?
 - Turn-taking or simultaneous?
 - Zero sum?

 Want algorithms for calculating a strategy (policy) which recommends a move from every possible state

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s₀)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player/state)
 - Transition function: $S \times A \rightarrow S$
 - Terminal test: $S \rightarrow \{true, false\}$
 - Terminal utilities: $S \times P \rightarrow R$
- Solution for a player is a <u>policy</u>: $S \rightarrow A$

···> <mark>) (</mark>	

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities
 - Pure competition:
 - One *maximizes*, the other *minimizes*

- General-Sum Games
 - Agents have *independent* utilities
 - Cooperation, indifference, competition, shifting alliances, and more are all possible
- Team Games
 - Common payoff for all team members

Adversarial Search

Single-Agent Trees

Value of a State

Adversarial Game Trees

Minimax Values

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Terminal values: part of the game

Minimax Implementation

return v

def min-value(state):
initialize v = +∞
for each successor of state:
 v = min(v, max-value(successor))
 return v

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

Minimax Implementation (Dispatch)

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is MIN: return min-value(state)

```
def max-value(state):
initialize v = -∞
for each successor of state:
    v = max(v, value(successor))
return v
```


def min-value(state):
initialize v = +∞
for each successor of state:
 v = min(v, value(successor))
 return v

Minimax Example

Minimax Properties

Optimal against a perfect player. Otherwise?

[Demo: min vs exp (L6D2, L6D3)]

Handling games with 3+ players

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

Emergent coordination in ghosts

Minimax Efficiency

How efficient is minimax?

- Just like (exhaustive) DFS
- Time: O(b^m)
- Space: O(bm)

• Example: For chess, $b \approx 35$, $m \approx 100$

- Exact solution is completely infeasible
- But, do we need to explore the whole tree?

Resource Limits

Game Tree Pruning

Minimax Pruning

The order of generation matters: more pruning is possible if good moves come first

Alpha-Beta Pruning

- General case (pruning children of MIN node) We're computing the MIN-VALUE at some node n We're looping over n's children *n*'s estimate of the childrens' min is dropping Who cares about n's value? MAX Let α be the best value that MAX can get so far at any choice point along the current path from the root If *n* becomes worse than α , MAX will avoid it, so we can prune *n*'s other children (it's already bad enough that it won't be played)
- Pruning children of MAX node is symmetric
 - Let β be the best value that MIN can get so far at any choice point along the current path from the root

Alpha-Beta Implementation

 α : MAX's best option on path to root β : MIN's best option on path to root

```
\begin{array}{l} \mbox{def max-value(state, } \alpha, \beta): \\ \mbox{initialize } v = -\infty \\ \mbox{for each successor of state:} \\ v = max(v, value(successor, \alpha, \beta)) \\ \mbox{if } v \geq \beta \mbox{ return } v \\ \alpha = max(\alpha, v) \\ \mbox{return } v \end{array}
```

 $\begin{array}{l} \mbox{def min-value(state , \alpha, \beta):} \\ \mbox{initialize } v = +\infty \\ \mbox{for each successor of state:} \\ v = min(v, value(successor, \alpha, \beta)) \\ \mbox{if } v \leq \alpha \mbox{ return } v \\ \beta = min(\beta, v) \\ \mbox{return } v \end{array}$

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features: $Eval(s) = w_1f_1(s) + w_2f_2(s) + \ldots + w_nf_n(s)$
 - E.g. $f_1(s) = (num white queens num black queens), etc.$
- Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

A danger of replanning agents!

- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, d=2)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Synergies between Evaluation Function and Alpha-Beta?

- Alpha-Beta: amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first (which later makes it more likely there is already a good alternative on the path to the root)
 - (somewhat similar to role of A* heuristic, CSPs filtering)
- Alpha-Beta: (similar for roles of min-max swapped)
 - Value at a min-node will only keep going down
 - Once value of min-node lower than better option for max along path to root, can prune
 - Hence: IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root THEN can prune

Summary

- Games are decision problems with \geq 2 agents
 - Huge variety of issues and phenomena depending on details of interactions and payoffs
- For zero-sum games, optimal decisions defined by minimax
 - Simple extension to n-player "rotating" max with vectors of utilities
 - Implementable as a depth-first traversal of the game tree
 - Time complexity O(b^m), space complexity O(bm)
- Alpha-beta pruning
 - Preserves optimal choice at the root
 - Alpha/beta values keep track of best obtainable values from any max/min nodes on path from root to current node
 - Time complexity drops to $O(b^{m/2})$ with ideal node ordering
- Exact solution is impossible even for "small" games like chess

Next Time: Uncertainty!

