Announcements

(3] 3 p s [m]

= HW1 is due Tuesday, January 30,
11:59 PM PT

= Project 1 is due Friday, February 2,
11:59 PM PT

" HW2 is due Tuesday, February 6,
11:59 PM PT

[=]

Pre-scan attendance QR code now!

(Password appears later)

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
[Updated slides from: Stuart Russell and Dawn Song]

Recap: Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

Recap: Local beam search

= Basic idea:
= K copies of a local search algorithm, initialized randomly

= For each iteration
= Generate ALL successors from K current states
= Choose best K of these to be the new current states

Random restarts, parallel search, & beam search

t=0 t=1 !=2

Random restarts

Random restarts, parallel search, & beam search

t=0 t=1 !=2 t=0 t=1 t=2
y) 9 7 3 10
s @< _ @ e >0 .
t=0 t=1 =2
O ... 9 y 10 10
g o<:8 ----- >O<:8 »O
t=0 t=1 =2
-------- 8 3 9
e T, *()<::::§§ 9
6 9
t=0 t=1 =2
... g | 9
6 o "<:. -0
7 9

Parallel search

Beam search

Genetic algorithms

24748552 |24 31% 327§52411 32748552 3274802
32752411 %ﬁ: 247@48552 >—< 24752411 24752411
24415124 20\26%‘ 327.52§411 32752124 3252124
32543213 | 11 14% 244155124 >_< 24415411 2441541[7]

Fithess Selection

Pairs

Cross—Over

= Genetic algorithms use a natural selection metaphor

= Resample K individuals at each step (selection) weighted by fitness function
= Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

= Does crossover make sense here?
= \What would mutation be?
= What would a good fitness function be?

Local search in continuous spaces

Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Oradea Airport locations
Neamt X= (X1;y1); (XZIyZ)r (X31y3)
| 87
' _ A 1asi City locations (x_,y,)
Arad 1 -~
—”.':’ 92
; = g9 Fagaras == “*~~~~ C, = cities closest to airport a
118 = e = :
,, ‘:~~~~~ %0 Vaslui
- QB\I‘ ~=~. \ Rimnicu Vilcea Objective: minimize
\
3 _ v \2 VR,
11 \\ : Lugoi Pitesti \>!! o flx) = Za ZCEC&? (Xa XC) * (ya yc)
1 ugoj
\
‘\}Q \\ %8 Hirsova
\ M Mehadia 10K, ¢ Urziceni» =
X 138 N - 86
Drobeta 120 e o e e -, -------------
Craiova 4 Eforie

Giurgiu

Handling a continuous state/action space

1. Discretize it!

= Define a grid with increment o, use any of the discrete algorithms

2. Choose random perturbations to the state

a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

Gradient vector Vf(x) = (0f/0x,, 0f/0y,, Of/0x,, ...)!

For the airports, f(x) =2, Zccc (Xq - X)* + (Vo - ¥o)?
Of/0x1=Zcc, 2(X; - X,)

At an extremum, Vf(x) =0

Can sometimes solve in closed form: x; = (2., x.)/| G|
Is this a local or global minimum of f?

Gradient descent: x « x - aVf(x)
" Huge range of algorithms for finding extrema using gradients

Summary

" Many configuration and optimization problems can be
formulated as local search
= General families of algorithms:
= Hill-climbing, continuous optimization
* Simulated annealing (and other stochastic methods)
" Local beam search: multiple interaction searches

" Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Games: Minimax and Alpha-Beta Pruning

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
[Updated slides from: Stuart Russell and Dawn Song]

Outline

History / Overview
Minimax for Zero-Sum Games

a-B Pruning

Finite lookahead and evaluation

Game Playing State of the Art

= Checkers:
= 1950: First computer player
= 1959: Samuel’s self-taught program
= 1995: First computer world champion*

= 2007: Checkers solved! SoLveD! +
" Chess:

= 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.

= 1960-1996: gradual improvements £xPERT +

= 1997: Deep Blue defeats human champion Garry Kasparov

= 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)
= Go:

= 1968: Zobrist’s program plays legal Go, barely (b>300!) HUMAN -

= 1968-2005: various ad hoc approaches tried, novice level

= 2005-2014: Monte Carlo tree search -> strong amateur

= 2016-2017: AlphaGo defeats human world champions

= 2022: Human exploits NN weakness to defeat top Go programs

A BR\CK =

= Pacman Checkers Chess

Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

Adversarial Games

Types of Games

= Game = task environment with > 1 agent

= Axes:
= Deterministic or stochastic?
» Perfect information (fully observable)?
"= Two, three, or more players?

" Teams or individuals?
g T T ————
" Turn-taking or simultaneous?

= /erosum?

= Want algorithms for calculating a strategy (policy) which recommends a
move from every possible state

Deterministic Games

= Many possible formalizations, one is:
= States: S (start at s;)
* Players: P={1...N} (usually take turns)
= Actions: A (may depend on player/state)
" Transition function: Sx A - S
= Terminal test: S - {true, false}
* Terminal utilities:SxP - R

= Solution for a player is a policy: S - A

Zero-Sum Games

. Zero-Sum\Games = General-Sum Games
= Agents have opposite utilitias = Agents have independent utilities
= Pure competition: = Cooperation, indifference, competition,
= One maximizes, the other minimizes shifting alliances, and more are all possible

= Team Games
= Common payoff for all team members

Adversarial Search

Single-Agent Trees

€
/\

T T~ T~
O BN X

Value of a State

\
Value of a state: Non-Terminal States:
The best achievable V(s

oo — max
outcome (utility)

s’ €children(s)
from that state
> g :-/\-:l %

E- €] n
Terminal States:
V(s) = known

Adversarial Game Trees

/\
3 -@ |

T~ T~
3 o > - ~JN ¢- N €- ©

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
Vis) = max V(s V(s = min Vi(s)
s’ €successors(s) sEsuccessors(s’)

Terminal States:
V(s) = known

Tic-Tac-Toe Game Tree

MAX (X)
X X X
MIN (0) X X X
X X X
x]o x| o] [Xx
MAX (X) 0
xJo[x] [x[o X0
MIN (0) X X
|
xJo[x] [x[o[x] [x[o]x
TERMINAL o|x| [o]o[x X
0 X[x[o| [X[o|o
Utility -1 0 +1

Adversarial Search (Minimax)

= Deterministic, zero-sum games:
= Tic-tac-toe, chess, checkers
" One player maximizes result

» The other minimizes result

= Minimax search:

= A state-space search tree
= Players alternate turns

= Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

Minimax values:
computed recursively

AN AN
(I

Terminal values:
part of the game

Minimax Implementation

Gef max-value(state):)
initialize v = -0
for each successor of state:
v = max(v, min-value(successor))

return v

- _/
V(s) = max V(s

s’ Esuccessors(s)

(4

ef min-value(state):

initialize v = o0

for each successor of state:
v = min(v, max-value(successor))

~

_ return v Y
V(s = min V(s)

s€successors(s’)

Minimax Implementation (Dispatch)

P

def value(state):

A\

if the state is a terminal state: return the state’s utility
if the next agent is MIAX: return max-value(state)
if the next agent is MIN: return min-value(state)

N

4

/def max-value(state): \
initialize v = -o0
for each successor of state:

v = max(v, value(successor))
return v

. J

4

4

(def min-value(state): \
initialize v = o0
for each successor of state:

v = min(v, value(successor))
return v

_ J

Minimax Example

Minimax Properties

maxX

min

10 10 9 100

Optimal against a perfect player. Otherwise?

[Demo: min vs exp (L6D2, L6D3)]

Handling games with 3+ players

= What if the game is not zero-sum, or has multiple players?

Multi-Agent Utilities

Generalization of minimax:
Terminals have utility tuples
Node values are also utility tuples
Each player maximizes its own component
Can give rise to cooperation and
competition dynamically...

L]
1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Emergent coordination in ghosts

Minimax Efficiency

= How efficient is minimax? J:EJ_\L
= Just like (exhaustive) DFS : 7
- éji

" Time: O(b™)
= Space: O(bm)

ﬂk

= Example: For chess, b = 35, m = 100
= Exact solution is completely infeasible

= But, do we need to explore the whole
tree?

s
()
]

R

Resource Limits

Game Tree Pruning

12

Minimax Pruning

2 14 5 2

The order of generation matters:
more pruning is possible if good moves come first

Alpha-Beta Pruning

= General case (pruning children of MIN node)

We’re computing the MIN-VALUE at some node n
We’re looping over n’s children

n’s estimate of the childrens’ min is dropping
Who cares about n’s value? MAX

Let a be the best value that MAX can get so far at any
choice point along the current path from the root

If n becomes worse than a, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

" Pruning children of MAX node is symmetric

Let B be the best value that MIN can get so far at any
choice point along the current path from the root

MAX

MIN

MAX

MIN

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

~

/def max-value(state, a, B):

initialize v = -o0

for each successor of state:
v = max(v, value(successor, a, B))
ifv>pBreturnv
a = max(a, v)

\ return v /

a

ef min-value(state, a, B):

initialize v = +o0

for each successor of state:
v = min(v, value(successor, a, B))
ifv<areturnv

B = min(pB, v)

~

\ return v /

Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong
= |mportant: children of the root may have the wrong value max
= So the most naive version won’t let you do action selection

min
Good child ordering improves effectiveness of pruning |

With “perfect ordering”:
* Time complexity drops to O(b™/2) 10 10 0
= Doubles solvable depth!

= Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

10

50

Alpha-Beta Quiz 2

) 4) 4

b e i I

A NRVANSRVANRRVAN

10 100 20

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search
= |nstead, search only to a limited depth in the tree

= Replace terminal utilities with an evaluation function for
non-terminal positions

Example:
= Suppose we have 100 seconds, can explore 10K nodes / sec
= So can check 1M nodes per move
" - reaches about depth 8 — decent chess program

Guarantee of optimal play is gone
More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

v

/

? ?

maxX

min

Evaluation Functions

Evaluation Functions

= Evaluation functions score non-terminals in depth-limited search

100 Welt X

2@ [0 @lz@
2 2¥rz0

Black to move

White slightly better

10t el el
B

White to move

Black winning

= |deal function: returns the actual minimax value of the position
= |n practice: typically weighted linear sum of features:

Eval(s) = w1 f1(8) +wafo(s) + ... + wnfn(s)

= E.g. fi(s) = (hum white queens — num black queens), etc.
= Or a more complex nonlinear function (e.g., NN) trained by self-play RL

b 4

Evaluation for Pacman

L L L L * L L L

*

]

{nln)

*

» NI
. 4
. * » OCOO””

®
L
L L L L * L L L *
*
*
L
*
*
*

@ *+ » s &+ »+ s »+ »

*

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

= A danger of replanning agents!
= He knows his score will go up by eating the dot now (west, east)
= He knows his score will go up just as much by eating the dot later (east, west)
* There are no point-scoring opportunities after eating the dot (within the horizon, d=2)
= Therefore, waiting seems just as good as eating: he may go east, then back west in the next
round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]

Depth Matters

» Evaluation functions are always
imperfect

" The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation

function matters

= An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Synergies between Evaluation Function and Alpha-Beta?

= Alpha-Beta: amount of pruning depends on expansion ordering

= Evaluation function can provide guidance to expand most promising nodes first

(which later makes it more likely there is already a good alternative on the path to
the root)

= (somewhat similar to role of A* heuristic, CSPs filtering)

= Alpha-Beta: (similar for roles of min-max swapped)
= Value at a min-node will only keep going down

" Once value of min-node lower than better option for max along path to root, can
prune

* Hence: IF evaluation function provides upper-bound on value at min-node, and

upper-bound already lower than better option for max along path to root
THEN can prune

Summary

= Games are decision problems with = 2 agents
= Huge variety of issues and phenomena depending on details of interactions and payoffs

" For zero-sum games, optimal decisions defined by minimax
= Simple extension to n-player “rotating” max with vectors of utilities
" Implementable as a depth-first traversal of the game tree
= Time complexity O(b™), space complexity O(bm)

= Alpha-beta pruning
= Preserves optimal choice at the root

= Alpha/beta values keep track of best obtainable values from any max/min nodes on path
from root to current node

= Time complexity drops to O(h™2) with ideal node ordering
" Exact solution is impossible even for “small” games like chess

|II

Next Time: Uncertainty!

