
Announcements

§ HW1 is due Tuesday, January 30, 
11:59 PM PT

§ Project 1 is due Friday, February 2, 
11:59 PM PT

§ HW2 is due Tuesday, February 6, 
11:59 PM PT

Pre-scan a*endance QR code now!
(Password appears later)

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at hIp://ai.berkeley.edu.]



Recap: Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors be*er than current, quit



Recap: Local beam search

§ Basic idea:
§ K copies of a local search algorithm, ini5alized randomly
§ For each itera5on

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states



Random restarts, parallel search, & beam search
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Random restarts, parallel search, & beam search
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Gene<c algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety



Example: N-Queens

§ Does crossover make sense here?
§ What would muta5on be?
§ What would a good fitness func5on be?



Local search in continuous spaces



Example: Si<ng airports in Romania
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Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport loca+ons 
 x = (x1,y1), (x2,y2), (x3,y3)

City loca+ons (xc,yc)

Ca = ci+es closest to airport a

Objec+ve: minimize
 f(x) = Sa ScÎCa (xa - xc)

2 + (ya - yc)2 



Handling a con<nuous state/ac<on space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing 

3. Compute gradient of f(x) analytically



Finding extrema in con<nuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can someSmes solve in closed form: x1 = (ScÎC1 xc)/|C1|
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients



§ Many configuration and optimization problems can be 
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary



Games: Minimax and Alpha-Beta Pruning

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at hIp://ai.berkeley.edu.]



Outline

§ History / Overview

§ Minimax for Zero-Sum Games

§ α-β Pruning 

§ Finite lookahead and evaluaUon



Game Playing State of the Art
§ Checkers:

§ 1950: First computer player
§ 1959: Samuel’s self-taught program
§ 1995: First computer world champion* 
§ 2007: Checkers solved!

§ Chess:
§ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, 

McCarthy. 
§ 1960-1996: gradual improvements
§ 1997: Deep Blue defeats human champion Garry Kasparov
§ 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

§ Go:
§ 1968: Zobrist’s program plays legal Go, barely (b>300!)
§ 1968-2005: various ad hoc approaches tried, novice level
§ 2005-2014: Monte Carlo tree search -> strong amateur
§ 2016-2017: AlphaGo defeats human world champions
§ 2022: Human exploits NN weakness to defeat top Go programs

§ Pacman



Behavior from Computa<on

[Demo: mystery pacman (L6D1)]



Video of Demo Mystery Pacman



Adversarial Games



§ Game = task environment with > 1 agent
§ Axes:

§ DeterminisUc or stochasUc?
§ Perfect informaUon (fully observable)?
§ Two, three, or more players?
§ Teams or individuals?
§ Turn-taking or simultaneous?
§ Zero sum?

§ Want algorithms for calcula5ng a strategy (policy) which recommends a 
move from every possible state

Types of Games



Deterministic Games

§ Many possible formaliza5ons, one is:
§ States: S (start at s0)
§ Players: P={1…N} (usually take turns)
§ AcUons: A (may depend on player/state)
§ TransiUon funcUon: S x A → S
§ Terminal test: S → {true, false}
§ Terminal uUliUes: S x P → R

§ Solu5on for a player is a policy: S → A



Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite u+li+es 
§ Pure compe++on: 

§ One maximizes, the other minimizes

§ General-Sum Games
§ Agents have independent u+li+es
§ Coopera+on, indifference, compe++on, 

shiBing alliances, and more are all possible

§ Team Games
§ Common payoff for all team members



Adversarial Search



Single-Agent Trees

8

2 0 2 6 4 6… …



Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: 
The best achievable 

outcome (uUlity) 
from that state



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8



Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Tic-Tac-Toe Game Tree



Adversarial Search (Minimax)

§ Determinis)c, zero-sum games:
§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax value: 

the best achievable u)lity against a 
ra)onal (op)mal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively



Minimax Implementa<on

def min-value(state):
iniUalize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v



Minimax Implementa<on (Dispatch)

def value(state):
if the state is a terminal state: return the state’s uUlity
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
iniUalize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
iniUalize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Minimax Example

12 8 5 23 2 144 6



Minimax Proper<es

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]



Handling games with 3+ players



Mul<-Agent U<li<es

§ What if the game is not zero-sum, or has mulUple players?

§ GeneralizaUon of minimax:
§ Terminals have u+lity tuples
§ Node values are also u+lity tuples
§ Each player maximizes its own component
§ Can give rise to coopera+on and

compe++on dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5



Emergent coordina<on in ghosts



Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole 

tree?



Resource Limits



Game Tree Pruning



Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters:
more pruning is possible if good moves come first



Alpha-Beta Pruning

§ General case (pruning children of MIN node)
§ We’re compu+ng the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s es+mate of the childrens’ min is dropping
§ Who cares about n’s value?  MAX
§ Let α be the best value that MAX can get so far at any 

choice point along the current path from the root

§ If n becomes worse than α, MAX will avoid it, so we can 
prune n’s other children (it’s already bad enough that it 
won’t be played)

§ Pruning children of MAX node is symmetric
§ Let β be the best value that MIN can get so far at any 

choice point along the current path from the root

MAX

MIN

MAX

MIN

α

n



Alpha-Beta Implementa<on

def min-value(state , α, β):
iniUalize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
iniUalize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Pruning Proper<es

§ This pruning has no effect on minimax value computed for the root!

§ Values of intermediate nodes might be wrong
§ Important: children of the root may have the wrong value
§ So the most naïve version won’t let you do ac+on selec+on

§ Good child ordering improves effecUveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is s+ll hopeless…

§ This is a simple example of metareasoning (compuUng about what to compute)

10 10 0

max

min



Alpha-Beta Quiz



Alpha-Beta Quiz 2



Resource Limits



Resource Limits

§ Problem: In realisUc games, cannot search to leaves!

§ SoluUon: Depth-limited search
§ Instead, search only to a limited depth in the tree
§ Replace terminal u+li+es with an evalua+on func+on for 

non-terminal posi+ons

§ Example:
§ Suppose we have 100 seconds, can explore 10K nodes / sec
§ So can check 1M nodes per move
§ a-b reaches about depth 8 – decent chess program

§ Guarantee of opUmal play is gone

§ More plies makes a BIG difference

§ Use iteraUve deepening for an anyUme algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Evalua<on Func<ons



Evalua<on Func<ons
§ EvaluaUon funcUons score non-terminals in depth-limited search

§ Ideal funcUon: returns the actual minimax value of the posiUon
§ In pracUce: typically weighted linear sum of features:

§ E.g.  f1(s) = (num white queens – num black queens), etc.
§ Or a more complex nonlinear funcUon (e.g., NN) trained by self-play RL



Evalua<on for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluaPon funcPon), smart ghosts coordinate (L6D6,7,8,10)]



Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]



Why Pacman Starves

§ A danger of replanning agents!
§ He knows his score will go up by ea)ng the dot now (west, east)
§ He knows his score will go up just as much by ea)ng the dot later (east, west)
§ There are no point-scoring opportuni)es aIer ea)ng the dot (within the horizon, d=2)
§ Therefore, wai)ng seems just as good as ea)ng: he may go east, then back west in the next 

round of replanning!

t=0 t=1



Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluaPon funcPon) (L6D7)]



Depth Ma\ers

§ Evaluation functions are always 
imperfect

§ The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters

§ An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Video of Demo Limited Depth (2)



Video of Demo Limited Depth (10)



Synergies between Evalua2on Func2on and Alpha-Beta?

§ Alpha-Beta: amount of pruning depends on expansion ordering
§ EvaluaUon funcUon can provide guidance to expand most promising nodes first 

(which later makes it more likely there is already a good alternaUve on the path to 
the root)
§ (somewhat similar to role of A* heuris+c,  CSPs filtering)

§ Alpha-Beta:  (similar for roles of min-max swapped)
§ Value at a min-node will only keep going down
§ Once value of min-node lower than be*er opUon for max along path to root, can 

prune
§ Hence: IF evaluaUon funcUon provides upper-bound on value at min-node, and 

upper-bound already lower than be*er opUon for max along path to root 
THEN can prune



Summary

§ Games are decision problems with ³ 2 agents
§ Huge variety of issues and phenomena depending on details of interac)ons and payoffs

§ For zero-sum games, op:mal decisions defined by minimax
§ Simple extension to n-player “rota)ng” max with vectors of u)li)es
§ Implementable as a depth-first traversal of the game tree
§ Time complexity O(bm), space complexity O(bm)

§ Alpha-beta pruning
§ Preserves op)mal choice at the root
§ Alpha/beta values keep track of best obtainable values from any max/min nodes on path 

from root to current node
§ Time complexity drops to O(bm/2) with ideal node ordering 

§ Exact solu:on is impossible even for “small” games like chess



Next Time: Uncertainty!


