Announcements

- HW1 is due **Tuesday, January 30, 11:59 PM PT**
- Project 1 is due **Friday, February 2, 11:59 PM PT**
- HW2 is due **Tuesday, February 6, 11:59 PM PT**

Pre-scan attendance QR code now!
(Password appears later)

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
[Updated slides from: Stuart Russell and Dawn Song]
Recap: Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
Recap: Local beam search

- Basic idea:
 - K copies of a local search algorithm, initialized randomly
 - For each iteration
 - Generate ALL successors from K current states
 - Choose best K of these to be the new current states
Random restarts, parallel search, & beam search
Random restarts, parallel search, & beam search

Parallel search

Beam search
Genetic algorithms use a natural selection metaphor

- Resample K individuals at each step (selection) weighted by fitness function
- Combine by pairwise crossover operators, plus mutation to give variety
Example: N-Queens

- Does crossover make sense here?
- What would mutation be?
- What would a good fitness function be?
Local search in continuous spaces
Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport.

Airport locations

\[x = (x_1, y_1), (x_2, y_2), (x_3, y_3) \]

City locations \((x_c, y_c)\)

\(C_a = \text{cities closest to airport } a\)

Objective: minimize

\[f(x) = \sum_a \sum_{c \in C_a} (x_a - x_c)^2 + (y_a - y_c)^2 \]
Handling a continuous state/action space

1. Discretize it!
 - Define a grid with increment δ, use any of the discrete algorithms

2. Choose random perturbations to the state
 a. First-choice hill-climbing: keep trying until something improves the state
 b. Simulated annealing

3. Compute gradient of $f(x)$ analytically
Finding extrema in continuous space

- Gradient vector $\nabla f(x) = (\partial f/\partial x_1, \partial f/\partial y_1, \partial f/\partial x_2, ...)^T$
- For the airports, $f(x) = \sum_a \sum_{c \in C_a} (x_a - x_c)^2 + (y_a - y_c)^2$
- $\partial f/\partial x_1 = \sum_{c \in C_1} 2(x_1 - x_c)$
- At an extremum, $\nabla f(x) = 0$
- Can sometimes solve in closed form: $x_1 = (\sum_{c \in C_1} x_c)/|C_1|$
- Is this a local or global minimum of f?
- Gradient descent: $x \leftarrow x - \alpha \nabla f(x)$
 - Huge range of algorithms for finding extrema using gradients
Summary

- Many configuration and optimization problems can be formulated as local search
- General families of algorithms:
 - Hill-climbing, continuous optimization
 - Simulated annealing (and other stochastic methods)
 - Local beam search: multiple interaction searches
 - Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches
Games: Minimax and Alpha-Beta Pruning

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.
[Updated slides from: Stuart Russell and Dawn Song]
Outline

- History / Overview
- Minimax for Zero-Sum Games
- α-β Pruning
- Finite lookahead and evaluation
Game Playing State of the Art

- **Checkers:**
 - 1950: First computer player
 - 1959: Samuel’s self-taught program
 - 1995: First computer world champion*
 - 2007: Checkers solved!

- **Chess:**
 - 1960-1996: gradual improvements
 - 1997: Deep Blue defeats human champion Garry Kasparov
 - 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

- **Go:**
 - 1968: Zobrist’s program plays legal Go, barely (b>300!)
 - 1968-2005: various ad hoc approaches tried, novice level
 - 2005-2014: Monte Carlo tree search -> strong amateur
 - 2016-2017: AlphaGo defeats human world champions
 - 2022: Human exploits NN weakness to defeat top Go programs

- **Pacman**
Behavior from Computation

Demo: mystery pac man (L6D1)
Adversarial Games
Types of Games

- Game = task environment with > 1 agent
- Axes:
 - Deterministic or stochastic?
 - Perfect information (fully observable)?
 - Two, three, or more players?
 - Teams or individuals?
 - Turn-taking or simultaneous?
 - Zero sum?

- Want algorithms for calculating a strategy (policy) which recommends a move from every possible state
Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P=\{1...N\}$ (usually take turns)
 - Actions: A (may depend on player/state)
 - Transition function: $S \times A \rightarrow S$
 - Terminal test: $S \rightarrow \{\text{true, false}\}$
 - Terminal utilities: $S \times P \rightarrow R$

- Solution for a player is a **policy**: $S \rightarrow A$
Zero-Sum Games

- **Zero-Sum Games**
 - Agents have *opposite* utilities
 - Pure competition:
 - One *maximizes*, the other *minimizes*

- **General-Sum Games**
 - Agents have *independent* utilities
 - Cooperation, indifference, competition, shifting alliances, and more are all possible

- **Team Games**
 - Common payoff for all team members
Adversarial Search
Single-Agent Trees
Value of a State

Value of a state: The best achievable outcome (utility) from that state.

Non-Terminal States:

\[V(s) = \max_{s' \in \text{children}(s)} V(s') \]

Terminal States:

\[V(s) = \text{known} \]
Adversarial Game Trees

-20 -8 ... -18 -5 ... -10 +4 -20 +8
Minimax Values

States Under Agent’s Control:

\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

States Under Opponent’s Control:

\[V(s') = \min_{s \in \text{successors}(s')} V(s) \]

Terminal States:

\[V(s) = \text{known} \]
Tic-Tac-Toe Game Tree

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

-1 0 +1
Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result

- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node’s minimax value:
 the best achievable utility against a rational (optimal) adversary
Minimax Implementation

def max-value(state):
 initialize v = -∞
 for each successor of state:
 v = max(v, min-value(successor))
 return v

V(s) = \max_{s' \in \text{successors}(s)} V(s')

def min-value(state):
 initialize v = +∞
 for each successor of state:
 v = min(v, max-value(successor))
 return v

V(s') = \min_{s \in \text{successors}(s')} V(s)
Minimax Implementation (Dispatch)

def value(state):
 if the state is a terminal state: return the state’s utility
 if the next agent is MAX: return max-value(state)
 if the next agent is MIN: return min-value(state)

def max-value(state):
 initialize v = -\infty
 for each successor of state:
 v = max(v, value(successor))
 return v

def min-value(state):
 initialize v = +\infty
 for each successor of state:
 v = min(v, value(successor))
 return v
Minimax Example
Minimax Properties

Optimal against a perfect player. Otherwise?

[Demo: min vs exp (L6D2, L6D3)]
Handling games with 3+ players
What if the game is not zero-sum, or has multiple players?

Generalization of minimax:
- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...
Emergent coordination in ghosts
Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: $O(b^m)$
 - Space: $O(bm)$

- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Resource Limits
Game Tree Pruning
Minimax Pruning

The order of generation matters: more pruning is possible if good moves come first
Alpha-Beta Pruning

- General case (pruning children of MIN node)
 - We’re computing the MIN-VALUE at some node n
 - We’re looping over n’s children
 - n’s estimate of the childrens’ min is dropping
 - Who cares about n’s value? MAX
 - Let α be the best value that MAX can get so far at any choice point along the current path from the root
 - If n becomes worse than α, MAX will avoid it, so we can prune n’s other children (it’s already bad enough that it won’t be played)

- Pruning children of MAX node is symmetric
 - Let β be the best value that MIN can get so far at any choice point along the current path from the root
def min-value(state, α, β):
 initialize v = +∞
 for each successor of state:
 v = min(v, value(successor, α, β))
 if v ≤ α return v
 α = max(α, v)
 return v

def max-value(state, α, β):
 initialize v = -∞
 for each successor of state:
 v = max(v, value(successor, α, β))
 if v ≥ β return v
 α = max(α, v)
 return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root
Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!

- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won’t let you do action selection

- Good child ordering improves effectiveness of pruning

- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...

- This is a simple example of metareasoning (computing about what to compute)
Alpha-Beta Quiz
Alpha-Beta Quiz 2

Diagram:

- a -> h
- b -> c, d
- e -> f, g
- i -> j, k
- l -> m, n
- Numbers: 10, 6, 100, 8, 1, 2, 20, 4
Resource Limits
Resource Limits

- **Problem:** In realistic games, cannot search to leaves!
- **Solution:** Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an **evaluation function** for non-terminal positions

- **Example:**
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 – decent chess program

- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm
Evaluation Functions
Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search

 ![Chessboard images showing evaluation functions](image)

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:
 \[
 \text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
 \]
 - E.g. \(f_1(s) = \text{(num white queens – num black queens)} \), etc.
 - Or a more complex nonlinear function (e.g., NN) trained by self-play RL
Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]
Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]
A danger of replanning agents!

- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, $d=2$)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!
Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]
Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

[Demo: depth limited (L6D4, L6D5)]
Video of Demo Limited Depth (2)
Video of Demo Limited Depth (10)
Synergies between Evaluation Function and Alpha-Beta?

- **Alpha-Beta**: amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first (which later makes it more likely there is already a good alternative on the path to the root)
 - (somewhat similar to role of A* heuristic, CSPs filtering)

- **Alpha-Beta**: (similar for roles of min-max swapped)
 - Value at a min-node will only keep going down
 - Once value of min-node lower than better option for max along path to root, can prune
 - Hence: IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root THEN can prune
Summary

- Games are decision problems with \(\geq 2 \) agents
 - Huge variety of issues and phenomena depending on details of interactions and payoffs
- For zero-sum games, optimal decisions defined by minimax
 - Simple extension to n-player “rotating” max with vectors of utilities
 - Implementable as a depth-first traversal of the game tree
 - Time complexity \(O(b^m) \), space complexity \(O(bm) \)
- Alpha-beta pruning
 - Preserves optimal choice at the root
 - Alpha/beta values keep track of best obtainable values from any max/min nodes on path from root to current node
 - Time complexity drops to \(O(b^{m/2}) \) with ideal node ordering
- Exact solution is impossible even for “small” games like chess
Next Time: Uncertainty!