CS 188: Artificial Intelligence

Inference in Propositional Logic

Quiz 1: Quiz 2:

Is the following sentence true in the Do the following sentences entail H?

following model? A, C,D,FGFAG=D,BAAAG=E,

Model: {A: True, B: False, C: True, D: True, E: True} AAE=H CADAE=A,

Sentence: ((—A v B) = —(D v E)) A (C<= C) FAG=EB=E L=8B=H

Slides mostly from Stuart Russell

University of California, Berkeley



Inference (reminder)

Method 1: model-checking

" For every possible world, if o is true make sure that is 3 true too

Method 2: theorem-proving

= Search for a sequence of proof steps (applications of inference rules) leading
froma to 3

Sound algorithm: everything it claims to prove is in fact entailed

Complete algorithm: every that is entailed can be proved



Simple theorem proving: Forward chaining

Forward chaining applies Modus Ponens to generate new facts:

" Given X, A X, AL X, = Yand Xy, X,, ..., X, inferY

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain only definite clauses:

= (Conjunction of symbols) = symbol; or

= Asingle symbol (note that X is equivalent to True = X)

Runs in linear time using two simple tricks:

= Each symbol X, knows which rules it appears in

= Each rule keeps count of how many of its premises are not yet satisfied



Forward chaining algorithm: Details

Reminder about definite clauses: X;A X5 A ... A X, =Y

function PL-FC-ENTAILS?(KB, q) returns true or false
count < a table, where count|c] is the number of symbols in c’s premise
inferred < a table, where inferred[s] is initially false for all symbols s
agenda & a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < Pop(agenda)
if p = q then return true
if inferred|[p] = false then

inferred[p]<true
for each clause cin KB where p is in c.premise do

decrement count|c]
if count[c] = 0 then add c.conclusion to agenda

return false



Forward chaining algorithm: Example

Query: F
C AD=E
2

Sentences: A,B,D,AAB=C,C AD=E

A B cC D E F AAB=>C

Inferred? F F F F F F Count? 2

Agenda? x X X



Properties of forward chaining

=" Theorem: FC is sound and complete for definite-clause KBs
= Soundness: follows from soundness of Modus Ponens (easy to check)

= Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final set of known-to-be-true symbols as a model m (other ones false)
3. Every clause in the original KB is true in m

Proof: Suppose a clause a;A... Aa, = b is false in m
Then a;A... Agis true in mand b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence mis a model of KB
5.1f KB |=q, g is true in every model of KB, including m



Backward chaining

" Puzzle to try at home: develop a “Backward chaining algorithm”
=" Then look it up to see if you've reproduced the standard algorithm
= |dea:

= Keep track of what you’re trying to prove
* Look for sentences that might get you there



Satisfiability and entailment

= A sentence is satisfiable if it is true in at least one world

= Suppose we have a hyper-efficient SAT solver (WARNING: NP-
COMPLETE & & E); how can we use it to test entailment?

"o =B

" iff oo = [is truein all possible worlds

" iff =(oo = [3) is false in all possible worlds

» iff oo A —[3 is false in all possible worlds, i.e., unsatisfiable

= So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

= Efficient SAT solvers operate on conjunctive normal form



Conjunctive normal form (CNF)

Every sentence can be expressed as a conjunction of clauses
Each C|au5e IS a diSjunctioA Replace biconditional by two implications ]

Each literal is a symbol or a n

Replace a = by —a v ]

(A v—-Bv —|C) AN (_IA) A\ (_I v F Distribute v over A

Convert anything to CNF dard trans jons!
" At 1,1 0= (Wall 0,1
= At 1,1 0= ((Wall_0,1 = Blocked W_0) A (F ocked W_0 =Wall_0,1))
= At 1,1 Ov ((—Wall_0,1 v Blocked W _0) K (—Blocked W_0v Wall_0,1))
= (mAt 1,1 0 v =Wall_ 0,1 v Blocked W_0) A

(—At 1,1 0 v —Blocked W_0 v Wall _0,1)




Distributivity

" (AVB)AC=(AAC)Vv(BACQ)

" (I'min SF or I’'m in Berkeley) and I’'m alive

" (I'min SF and I’m alive) or (I’'m in Berkeley and I’'m alive)
" (AAB)vC=(AVvC)A(BV()

= -(AAB)=(—A Vv —B)

" |[t’s not the case that (I’'m alive and I’'m kicking)

= (I'm not alive) or (I’'m not kicking)

= -(AvB)=(—A A —B)



Reduction to CNF

Goal: ( Av—-Bv-C)A(—-A)A(-DVBVCVEVF)A(-EV—-F)A(BVE)

1. Getridof <
= Replacea < Bwith(a=B)A (= a)
= o and P could be long expressions, not just symbols
2. Getridof=
= Replace a = B with B v -«
3. Distribute —s to lower levels
= Replace —(a A —f3) with —a v 3
4. If any vs are at a higher level than As, distribute down
= Replace (a A B AY) V(€A ) with...
. (ave)ABvealyve)alavo)a(Byv ) Ay vd)



clauses

Depth first search solver

Reminder of conjunctive normal form: (Av B) A (Av —C v D) A (C v —B) A (B)

function DFSS(clauses, symbols, partmodel={}) returns true or false
if every clause in clauses is true in partmodel then return true
if some clause in clauses is false in partmodel then return false

Tricks go here

P < First(symbols); rest < Rest(symbols)
return or(DFSS(clauses, rest, partmodelU{P=true}),
DFSS(clauses, rest, partmodelU{P=false}))



Efficient SAT solvers

= DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers
= Recursive depth-first search over partial models with some extras:

clauses

» Early termination: stop if _—
= all clauses are satisfied; e.g., (A v B) A (A v —C) is satisfied by {A=true}
= any clause is falsified; e.g., (A v B) A (A v —C) is falsified if {A=false, B=false}

= Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have

the same sign, then give the symbol that value

= E.g., A'is positive in every clause of (A v B) A (A v —C) A (C v —B) so set it to true

» Unit clauses: if clause has one unresolved literal, set symbol to satisfy clause
= E.g., if A=false, (A v B) A (=B v —C) becomes (false v B) A (—B v —C), so set B=true
= Satisfying the unit clauses often leads to further propagation, new unit clauses, etc.



DPLL algorithm N

Reminder of conjunctive normal form: (Av B) A (Av =C v D) A (C v —B) A (B)

function DPLL(clauses, symbols, partmodel={}) returns true or false
if every clause in clauses is true in partmodel then return true
if some clause in clauses is false in partmodel then return false
clauses & every clause in clauses that is not true (or false)
P, value <FIND-PURE-SYMBOL(symbols, clauses, partmodel)
if P is non-null then return DPLL(clauses, symbols—P, partmodelU{P=value})
P, value <FIND-UNIT-CLAUSE(clauses, partmodel)  *clause with 1 unresolved literal
if P is non-null then return DPLL(clauses, symbols—P, partmodelU{P=value})
P & First(symbols); rest €& Rest(symbols)
return or(DPLL(clauses, rest, partmodelU{P=true}),
DPLL(clauses, rest, partmodelU{P=false}))



DPLL Example

Start with (Av B) A(=AVv =C) A (Cv =B)A (A Vv B v ()

No pure symbols or unit clauses

(TVB)A(=TV=C)A(Cv—-B)A(TVBVC(C)
Remove satisfied clauses <SS~
(=T v —=C) A (C Vv —B)

B is a pure symbol —set it to false

(=T v —=C) A (C Vv —F)

Remove satisfied clauses

(—T v —=C)

Cis a pure symbol (also a unit clause btw beca
(=T v —F)

All clauses satisfied!

= (FVvB)A(—=FVv—=C)A(Cv—=B)A(FVvBvVC()

Question: what partial model are we dealing
with at this point? (What is a partial model?)

use the clause has one unresolved literal)




Efficiency

= Naive implementation of DPLL: solve ~100 variables

= Extras:
= Smart variable and value ordering
= Divide and conquer
= Caching unsolvable subcases as extra clauses to avoid redoing them

= Cool indexing and incremental recomputation tricks so that every step of the
DPLL algorithm is efficient (typically O(1))
= |Index of clauses in which each variable appears in positive / negative form
= Keep track number of satisfied clauses, update when variables assigned
= Keep track of number of remaining literals in each clause

= Real implementation of DPLL: solve ~100,000,000 variables



SAT solvers in practice

Circuit verification: does this VLSI circuit compute the right answer?
Software verification: does this program compute the right answer?
Software synthesis: what program computes the right answer?
Protocol verification: can this security protocol be broken?

Protocol synthesis: what protocol is secure for this task?

Lots of combinatorial problems: what is the solution?

Planning: how can I eat all the dots???



Resolution (briefly)

Every CNF clause can be written as

= Conjunction of symbols = disjunction of symbols
= AvBv—-Cv-—=D = CAD=AVB

The resolution inference rule takes two such clauses and infers a
new one by resolving complementary symbols:

Example:AABAC = UvVV
DAE AU =XVY
AABACADAE =>VVvXVY
Sentence unsatistfiable iff repeated resolution produces () = ()

Resolution is complete for propositional logic, but exp-time



A knowledge-based agent

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, an integer, initially O
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action < ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t<t+1
return action



Planning as satisfiability

Given a hyper-efficient SAT solver, can we use it to make plans?
Yes, for fully observable, deterministic case

For T =1 to oo,
= |nitialize the KB with PacPhysics for T time steps
= Assert goal is true attime T

Planning problem is solvable iff there is some satisfying
assignment

Solution obtained from truth values of action variables
Read off action variables from SAT-solver solution



Basic PacPhysics for Planning

= Map: where the walls are and aren’t, where the food is and isn’t
= |nitial state: Pacman start location (exactly one place), ghosts

= Actions: Pacman does exactly one action at each step

= Transition model:

" <atx,y t>< [at x,y t-1 and stayed put] v [next to x,y t-1 and moved to x,y]
= <food x,y t><> [food x,y t-1 and not eaten]
" <ghostz x,y_t><[.....]

= Assertion of goal attainment: Pacman achieves the goal by time T
(not really “physics”)




SCORE: ()




SCORE: (



SCORE: ()



Reminder: Partially observable Pacman

Basic question: where am |?

Variables:
= Wall 0,0, Wall_0,1, ...
= Blocked W _0, Blocked N O, ..., Blocked W 1, ..
= WO,NO,..,W.1,..
= At 0,0 0,At 0,1 0,.. At 00 1,..

Sensor model:
= Blocked W 0« ((At_1,1 0 AWall_0,1)v
(At_1,2 0 A Wall_0,2) v
(At_1,3 0 AWall_0,3)v....)

Map: where are the walls

Initial state: Pacman definitely somewhere

Domain constraints: e.g. only one action per timestep
Transition model: how state variables change (or don’t)




State estimation

= State estimation means keeping track of what’s true now
= A logical agent can just ask itself!
= E.g., ask whether KB A <actions> A <percepts> |= At 2,2 6
= This is “lazy”: it analyzes one’s whole life history at each step!
= A more “eager” form of state estimation:

= After each action and percept

= For each state variable X t
" |f KB A action_t-1 A percept t |=X t,add X _tto KB
» |f KB A action_t-1 A percept t |= =X t, add —X_t to KB



Example: Localization in a known map

" |nitialize the KB with PacPhysics for T time steps
= Run the Pacman agent for T time steps:

= After each action and percept

= For each variable At x,y t

» |f KB A action_t-1 A percept t |= At x,y t,add At_x,y tto KB

= |f KB A action_t-1 A percept t |=— At x,y t,add — At _x,y tto KB
" Choose an action

= Pacman’s possible locations are those that are not provably false



Localization demo

Percept [C
Action 23239 23229
9 2 > >
Percept 3 2%2% 299232%%2%%
. 2 9 > > T
Action 2922%% 2339
p > TN > > TN )
ercept p :;a; :::’33:: ;
. >
Action 299399 233

Percept



Localization demo

Percept [~
Action SOUTH 29299 2999
2 9 9 2 9
Percept 9 929933333333%%%
. 2 9 2 9
Action ;’:”: ,:3:
Percept ; :;a; :::’33:: ;
Action 2233 3 23393

Percept



Percept [~

Action

SOUTH

Percept | |

Action
Percept
Action
Percept

SOUTH

Localization demo




Percept [~
Action SOUTH
Percept | |
Action SOUTH
Percept | |
Action

Percept

Localization demo




Localization demo

Percept
Action 23239 23229
9 2 > >
Percept 3 2%2% 299232%%2%%
. 2 9 > > T
Action 2922%% 2339
p > TN > > TN )
ercept p :;a; :::’33:: ;
. >
Action 299399 233

Percept



Localization demo

Percept

Action WEST ©edd: 333339 -3
Percept ) :::::..::: ) )
Action :, ,’: > P | 3:
Percept . .3 333333 3-. .
Action ) ’ ’ o

Y
v

29 2332399

Percept



Localization demo

Percept
Action WEST
Percept _

Action

Percept

Action ,, °

Percept



Localization demo

Percept
Action WEST
Percept _
Action WEST
Percept

Action

Percept



Localization demo

Percept
Action WEST
Percept
Action WEST
Percept
Action

Percept



Percept
Action
Percept
Action
Percept
Action
Percept

WEST

WEST

WEST

Localization demo




Percept
Action
Percept
Action
Percept
Action
Percept

WEST

WEST

WEST

Localization demo




Localization with random movement




State estimation contd.

" |s the eager method enough for accurate state
estimation?

* No! There can be cases where neither X, nor =X, is

entailed, and neither Y, nor —Y, is entailed, but
some constraint, e.g., X, vY,, is entailed

O
O
Q
O
&t
O
O

O; O
oNe)

" E.g., the study at time t was flawed or meat causes
cancer

= Exact state estimation is intractable in general

= Requires keeping track of properties of
combinations of state variables

& OO 0|00
- O O 0|00

o N

O

O

O

O

O

0.0.0




Example: Mapping from a known relative location

Without loss of generality, call the initial location 0,0

The percept tells Pacman which actions work, so he always knows where he is
= “Dead reckoning”

Initialize the KB with PacPhysics for T time steps, starting at 0,0
Run the Pacman agent for T time steps

= At each time step
= Update the KB with previous action and new percept facts
= For each wall variable Wall_x,y
= |f Wall x,y is entailed, add to KB
= |f “Wall x,y is entailed, add to KB
*= Choose an action

The wall variables constitute the map



Mapping demo

Percept |
Action NORTH
Percept I
Action EAST
Percept T}
Action SOUTH
Percept _J




Example: Simultaneous localization and mapping

= Often, dead reckoning won’t work in the real world

= E.g., sensors just count the number of adjacent walls (0,1,2,3 = 2 bits)

= Pacman doesn’t know which actions work, so he’s “lost”

= So if he doesn’t know where he is, how does he build a map???
" |nitialize the KB with PacPhysics for T time steps, starting at 0,0
= Run the Pacman agent for T time steps

= At each time step
= Update the KB with previous action and new percept facts
= For each x,y, add either Wall x,y or =Wall x,y to KB, if entailed
= For each x,y, add either At _x,y tor —At x,y tto KB, if entailed
= Choose an action



Summary

» Logical inference computes entailment relations among sentences
= Theorem provers apply inference rules to sentences

= Forward chaining applies modus ponens with definite clauses; linear time
= Resolution is complete for PL but exponential time in the worst case

= SAT solvers based on DPLL provide incredibly efficient inference

» Logical agents can do localization, mapping, SLAM, planning (and

many other things) just using one generic inference algorithm on
one knowledge base



