CS 188: Artificial Intelligence

Inference in Propositional Logic

Quiz 1:
Is the following sentence true in the following model?

Model: {A: True, B: False, C: True, D: True, E: True}
Sentence: \(((\neg A \lor B) \implies \neg (D \lor E)) \land (C \iff C) \)

Quiz 2:
Do the following sentences entail H?

\begin{align*}
A, C, D, F, G, F \land G &\Rightarrow D, B \land A \land G \Rightarrow E, \\
A \land E &\Rightarrow H, C \land D \land E \Rightarrow A, \\
F \land G &\Rightarrow E, B \Rightarrow E, L \Rightarrow B, B \Rightarrow H
\end{align*}

Slides mostly from Stuart Russell

University of California, Berkeley
Inference (reminder)

- **Method 1: model-checking**
 - For every possible world, if α is true make sure that is β true too

- **Method 2: theorem-proving**
 - Search for a sequence of proof steps (applications of *inference rules*) leading from α to β

- *Sound* algorithm: everything it claims to prove is in fact entailed

- *Complete* algorithm: every that is entailed can be proved
Simple theorem proving: Forward chaining

- Forward chaining applies Modus Ponens to generate new facts:
 - *Given* \(X_1 \land X_2 \land \ldots \land X_n \Rightarrow Y \) and \(X_1, X_2, \ldots, X_n \), *infer* \(Y \)

- Forward chaining keeps applying this rule, adding new facts, until nothing more can be added.

- Requires KB to contain only *definite clauses*:
 - (Conjunction of symbols) \(\Rightarrow \) symbol; or
 - A single symbol (note that \(X \) is equivalent to \(\text{True} \Rightarrow X \))

- Runs in *linear* time using two simple tricks:
 - Each symbol \(X_i \) knows which rules it appears in
 - Each rule keeps count of how many of its premises are not yet satisfied
Forward chaining algorithm: Details

Reminder about definite clauses: $X_1 \land X_2 \land \ldots \land X_n \Rightarrow Y$

```plaintext
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s premise
inferred ← a table, where inferred[s] is initially false for all symbols s
agenda ← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
    p ← Pop(agenda)
    if p = q then return true
    if inferred[p] = false then
        inferred[p] ← true
        for each clause c in KB where p is in c.premise do
            decrement count[c]
            if count[c] = 0 then add c.conclusion to agenda

return false
```
Forward chaining algorithm: Example

Sentences: A, B, D, A \land B \Rightarrow C, C \land D \Rightarrow E

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>A \land B \Rightarrow C</th>
<th>C \land D \Rightarrow E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inferred?</td>
<td>Agenda?</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>F</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Query: F
Properties of forward chaining

- Theorem: FC is sound and complete for definite-clause KBs
- Soundness: follows from soundness of Modus Ponens (easy to check)
- Completeness proof:
 1. FC reaches a fixed point where no new atomic sentences are derived
 2. Consider the final set of known-to-be-true symbols as a model m (other ones false)
 3. Every clause in the original KB is true in m

 Proof: Suppose a clause $a_1 \land \ldots \land a_k \Rightarrow b$ is false in m
 Then $a_1 \land \ldots \land a_k$ is true in m and b is false in m
 Therefore the algorithm has not reached a fixed point!
 4. Hence m is a model of KB
 5. If $KB \models q$, q is true in every model of KB, including m
Backward chaining

- Puzzle to try at home: develop a “Backward chaining algorithm”
- Then look it up to see if you’ve reproduced the standard algorithm
- Idea:
 - Keep track of what you’re trying to prove
 - Look for sentences that might get you there
Satisfiability and entailment

- A sentence is **satisfiable** if it is true in at least one world
- Suppose we have a hyper-efficient SAT solver (**WARNING**: NP-**COMPLETE** 😈 😈 😈); how can we use it to test entailment?
 - $\alpha \models \beta$
 - iff $\alpha \implies \beta$ is true in all possible worlds
 - iff $\neg(\alpha \implies \beta)$ is false in all possible worlds
 - iff $\alpha \land \neg\beta$ is false in all possible worlds, i.e., unsatisfiable
- So, add the **negated** conclusion to what you know, test for (un)satisfiability; also known as **reductio ad absurdum**
- Efficient SAT solvers operate on **conjunctive normal form**
Conjunctive normal form (CNF)

- Every sentence can be expressed as a **conjunction** of **clauses**
- Each clause is a **disjunction** of literals
- Each literal is a symbol or a negated symbol

\[(A \lor \neg B \lor \neg C) \land (\neg A) \land (\neg D) \land (\neg E) \land (\neg F)\]

Convert anything to CNF with standard transformations!

- \[\neg \text{At}_1,1_0 \lor (\neg \text{Wall}_0,1 \lor \text{Blocked}_W_0) \lor (\neg \text{Blocked}_W_0 \lor \text{Wall}_0,1)\]

Replace biconditional by two implications

Replace \(\alpha \Rightarrow \beta \) by \(\neg \alpha \lor \beta \)

Distribute \(\lor \) over \(\land \)
Distributivity

- \((A \lor B) \land C = (A \land C) \lor (B \land C)\)
- (I’m in SF or I’m in Berkeley) and I’m alive
- (I’m in SF and I’m alive) or (I’m in Berkeley and I’m alive)
- \((A \land B) \lor C = (A \lor C) \land (B \lor C)\)
- \(\neg (A \land B) = (\neg A \lor \neg B)\)
- It’s not the case that (I’m alive and I’m kicking)
- (I’m not alive) or (I’m not kicking)
- \(\neg (A \lor B) = (\neg A \land \neg B)\)
Reduction to CNF

Goal: \((A \lor \neg B \lor \neg C) \land (\neg A) \land (\neg D \lor B \lor C \lor E \lor F) \land (\neg E \lor \neg F) \land (B \lor E)\)

1. Get rid of \(\iff\)
 - Replace \(\alpha \iff \beta\) with \((\alpha \implies \beta) \land (\beta \implies \alpha)\)
 - \(\alpha\) and \(\beta\) could be long expressions, not just symbols

2. Get rid of \(\implies\)
 - Replace \(\alpha \implies \beta\) with \(\beta \lor \neg \alpha\)

3. Distribute \(\neg\)s to lower levels
 - Replace \(\neg(\alpha \land \neg \beta)\) with \(\neg \alpha \lor \beta\)

4. If any \(\lor\)s are at a higher level than \(\land\)s, distribute down
 - Replace \((\alpha \land \beta \land \gamma) \lor (\varepsilon \land \delta)\) with...
 - \((\alpha \lor \varepsilon) \land (\beta \lor \varepsilon) \land (\gamma \lor \varepsilon) \land (\alpha \lor \delta) \land (\beta \lor \delta) \land (\gamma \lor \delta)\)
Depth first search solver

Reminder of conjunctive normal form:

$$(A \lor B) \land (A \lor \neg C \lor D) \land (C \lor \neg B) \land (B)$$

function `DFSS(clauses, symbols, partmodel={})` **returns** true or false

if every clause in `clauses` is true in `partmodel` **then return** true

if some clause in `clauses` is false in `partmodel` **then return** false

P ← `First(symbols)`; rest ← `Rest(symbols)`

return or(`DFSS(clauses, rest, partmodelU{P=true})`, `DFSS(clauses, rest, partmodelU{P=false})`)
Efficient SAT solvers

- **DPLL (Davis-Putnam-Logemann-Loveland)** is the core of modern solvers
- Recursive depth-first search over partial models with some extras:
 - **Early termination**: stop if
 - all clauses are satisfied; e.g., \((A \lor B) \land (A \lor \neg C)\) is satisfied by \(\{A=true\}\)
 - any clause is falsified; e.g., \((A \lor B) \land (A \lor \neg C)\) is falsified if \(\{A=false, B=false\}\)
 - **Pure literals**: if all occurrences of a symbol in as-yet-unsatisfied clauses have the same sign, then give the symbol that value
 - E.g., A is positive in every clause of \((A \lor B) \land (A \lor \neg C) \land (C \lor \neg B)\) so set it to true
 - **Unit clauses**: if clause has one unresolved literal, set symbol to satisfy clause
 - E.g., if A=false, \((A \lor B) \land (\neg B \lor \neg C)\) becomes \((false \lor B) \land (\neg B \lor \neg C)\), so set B=true
 - Satisfying the unit clauses often leads to further propagation, new unit clauses, etc.
function DPLL(clauses, symbols, partmodel={}) returns true or false

if every clause in clauses is true in partmodel then return true

if some clause in clauses is false in partmodel then return false

clauses ← every clause in clauses that is not true (or false)

P, value ← FIND-PURE-SYMBOL(symbols, clauses, partmodel)

if P is non-null then return DPLL(clauses, symbols−P, partmodelU{P=value})

P, value ← FIND-UNIT-CLAUSE(clauses, partmodel)

if P is non-null then return DPLL(clauses, symbols−P, partmodelU{P=value})

P ← First(symbols); rest ← Rest(symbols)

return or(DPLL(clauses, rest, partmodelU{P=true}), DPLL(clauses, rest, partmodelU{P=false}))
DPLL Example

- Start with \((A \lor B) \land (\neg A \lor \neg C) \land (C \lor \neg B) \land (A \lor B \lor C)\)
- No pure symbols or unit clauses
 - \((T \lor B) \land (\neg T \lor \neg C) \land (C \lor \neg B) \land (T \lor B \lor C)\)
 - Remove satisfied clauses
 - \((\neg T \lor \neg C) \land (C \lor \neg B)\)
 - \(B\) is a pure symbol – set it to false
 - \((\neg T \lor \neg C) \land (C \lor \neg F)\)
 - Remove satisfied clauses
 - \((\neg T \lor \neg C)\)
 - \(C\) is a pure symbol (also a unit clause btw because the clause has one unresolved literal)
 - \((\neg T \lor \neg F)\)
 - All clauses satisfied!

Question: what partial model are we dealing with at this point? (What is a partial model?)
Efficiency

- Naïve implementation of DPLL: solve ~100 variables
- Extras:
 - Smart variable and value ordering
 - Divide and conquer
 - Caching unsolvable subcases as extra clauses to avoid redoing them
 - Cool indexing and incremental recomputation tricks so that every step of the DPLL algorithm is efficient (typically O(1))
 - Index of clauses in which each variable appears in positive / negative form
 - Keep track number of satisfied clauses, update when variables assigned
 - Keep track of number of remaining literals in each clause
- Real implementation of DPLL: solve ~100,000,000 variables
SAT solvers in practice

- Circuit verification: does this VLSI circuit compute the right answer?
- Software verification: does this program compute the right answer?
- Software synthesis: what program computes the right answer?
- Protocol verification: can this security protocol be broken?
- Protocol synthesis: what protocol is secure for this task?
- Lots of combinatorial problems: what is the solution?
- Planning: *how can I eat all the dots???
Resolution (briefly)

- **Every CNF clause can be written as**
 - Conjunction of symbols \Rightarrow disjunction of symbols
 - $A \lor B \lor \neg C \lor \neg D = C \land D \Rightarrow A \lor B$

- **The resolution inference rule takes two such clauses and infers a new one by resolving complementary symbols:**

- **Example:**

 \[
 A \land B \land C \Rightarrow U \lor V \\
 D \land E \land U \Rightarrow X \lor Y
 \]

 \[
 \underbrace{A \land B \land C \land D \land E} \Rightarrow V \lor X \lor Y
 \]

- **Sentence unsatisfiable iff repeated resolution produces $() \Rightarrow ()$**

- **Resolution is complete for propositional logic, but exp-time**
A knowledge-based agent

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
 t, an integer, initially 0
 TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
 action ← ASK(KB, MAKE-ACTION-QUERY(t))
 TELL(KB, MAKE-ACTION-SENTENCE(action, t))
 t ← t + 1
return action
Planning as satisfiability

- Given a hyper-efficient SAT solver, can we use it to make plans?
- Yes, for **fully observable, deterministic** case
- For $T = 1$ to ∞,
 - Initialize the KB with **PacPhysics** for T time steps
 - Assert goal is true at time T
- Planning problem is solvable iff there is some satisfying assignment
- Solution obtained from truth values of action variables
- Read off action variables from SAT-solver solution
Basic PacPhysics for Planning

- **Map**: where the walls are and aren’t, where the food is and isn’t
- **Initial state**: Pacman start location (exactly one place), ghosts
- **Actions**: Pacman does exactly one action at each step
- **Transition model**:
 - `<at x,y_t> ⇔ [at x,y_t-1 and stayed put] v [next to x,y_t-1 and moved to x,y]`
 - `<food x,y_t> ⇔ [food x,y_t-1 and not eaten]`
 - `<ghost_B x,y_t> ⇔ [.....]`
- **Assertion of goal attainment**: Pacman achieves the goal by time T (not really “physics”)
Reminder: Partially observable Pacman

- Basic question: where am I?
- Variables:
 - Wall_0,0, Wall_0,1, ...
 - Blocked_W_0, Blocked_N_0, ..., Blocked_W_1, ...
 - W_0, N_0, ..., W_1, ...
 - At_0,0_0 , At_0,1_0, ..., At_0,0_1, ...

- Sensor model:
 - Blocked_W_0 \iff ((At_1,1_0 \land Wall_0,1) \lor (At_1,2_0 \land Wall_0,2) \lor (At_1,3_0 \land Wall_0,3) \lor ...)

- Map: where are the walls
- Initial state: Pacman definitely somewhere
- Domain constraints: e.g. only one action per timestep
- Transition model: how state variables change (or don’t)
State estimation

- **State estimation** means keeping track of what’s true now

- A logical agent can just ask itself!
 - E.g., ask whether \(\text{KB} \land <\text{actions}> \land <\text{percepts}> \models \text{At}_2,2_6 \)

- This is “lazy”: it analyzes one’s whole life history at each step!

- A more “eager” form of state estimation:
 - After each action and percept
 - For each state variable \(X_t \)
 - If \(\text{KB} \land \text{action}_{t-1} \land \text{percept}_t \models X_t \), add \(X_t \) to KB
 - If \(\text{KB} \land \text{action}_{t-1} \land \text{percept}_t \models \neg X_t \), add \(\neg X_t \) to KB
Example: Localization in a known map

- Initialize the KB with **PacPhysics** for T time steps
- Run the Pacman agent for T time steps:
 - After each action and percept
 - For each variable At_{x,y_t}
 - If $KB \land \text{action}_{t-1} \land \text{percept}_t \models At_{x,y_t}$, add At_{x,y_t} to KB
 - If $KB \land \text{action}_{t-1} \land \text{percept}_t \models \neg At_{x,y_t}$, add $\neg At_{x,y_t}$ to KB
 - Choose an action
- Pacman’s *possible* locations are those that are not provably false
Localization demo

- Percept
- Action
- Percept
- Action
- Percept
- Percept
Localization demo

- Percept
- Action: SOUTH
- Percept
- Action
- Percept
- Action
- Percept
Localization demo

- Percept
- Action: SOUTH
- Percept
- Action: SOUTH
- Percept
- Action: SOUTH
- Percept
Localization demo

- Percept
- Action: SOUTH
- Percept
- Action: SOUTH
- Percept
- Action
- Percept
Localization demo

- Percept
- Action
- Percept
- Action
- Percept
- Percept
Localization demo

- Percept
- Action: WEST
- Percept
- Action
- Percept
- Action
- Percept
Localization demo

- Percept
- Action: WEST
- Percept
- Action
- Percept
- Action
- Percept
Localization demo

- Percept
- Action \textit{WEST}
- Percept
- Action \textit{WEST}
- Percept
- Action
- Percept
Localization demo

- Percept
- Action \textit{WEST}
- Percept
- Action \textit{WEST}
- Percept
- Action
- Percept
Localization demo

- Percept
- Action \textit{WEST}
- Percept
- Action \textit{WEST}
- Percept
- Action \textit{WEST}
- Percept
Localization demo

- Percept
- Action \textit{WEST}
- Percept
- Action \textit{WEST}
- Percept
- Action \textit{WEST}
- Percept
Localization with random movement
Is the eager method enough for accurate state estimation?

No! There can be cases where neither X_t nor $\neg X_t$ is entailed, and neither Y_t nor $\neg Y_t$ is entailed, but some constraint, e.g., $X_t \lor Y_t$, is entailed.

E.g., the study at time t was flawed or meat causes cancer.

Exact state estimation is intractable in general.

Requires keeping track of properties of combinations of state variables.
Example: Mapping from a known relative location

- Without loss of generality, call the initial location 0,0
- The percept tells Pacman which actions work, so he always knows where he is
 - “Dead reckoning”
- Initialize the KB with \texttt{PacPhysics} for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
 - At each time step
 - Update the KB with previous action and new percept facts
 - For each wall variable $\text{Wall}_{x,y}$
 - If $\text{Wall}_{x,y}$ is entailed, add to KB
 - If $\neg \text{Wall}_{x,y}$ is entailed, add to KB
 - Choose an action
- The wall variables constitute the map
Mapping demo

- Percept
- Action: NORTH
- Percept
- Action: EAST
- Percept
- Action: SOUTH
- Percept
Example: Simultaneous localization and mapping

- Often, dead reckoning won’t work in the real world
 - E.g., sensors just count the number of adjacent walls (0,1,2,3 = 2 bits)
- Pacman doesn’t know which actions work, so he’s “lost”
 - So if he doesn’t know where he is, how does he build a map???
- Initialize the KB with PacPhysics for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
 - At each time step
 - Update the KB with previous action and new percept facts
 - For each x,y, add either Wall$_{x,y}$ or \negWall$_{x,y}$ to KB, if entailed
 - For each x,y, add either At$_{x,y_t}$ or \negAt$_{x,y_t}$ to KB, if entailed
 - Choose an action
Summary

- Logical inference computes entailment relations among sentences
- Theorem provers apply inference rules to sentences
 - Forward chaining applies modus ponens with definite clauses; linear time
 - Resolution is complete for PL but exponential time in the worst case
- SAT solvers based on DPLL provide incredibly efficient inference
- Logical agents can do localization, mapping, SLAM, planning (and many other things) just using one generic inference algorithm on one knowledge base