
CS 188: Artificial Intelligence
Inference in Propositional Logic

Slides mostly from Stuart Russell

University of California, Berkeley

Quiz 1:

Is the following sentence true in the
following model?

Model: {A: True, B: False, C: True, D: True, E: True}

Sentence: ((¬A Ú B) Þ ¬(D Ú E)) Ù (C Û C)

Quiz 2:

Do the following sentences entail H?
A, C, D, F, G, F Ù G Þ D, B Ù A Ù G Þ E,

A Ù E Þ H, C Ù D Ù E Þ A,

F Ù G Þ E, B Þ E, L Þ B, B Þ H
((F Ú F) Þ ¬(T Ú T)) Ù (T Û T)

(F Þ F) Ù T
T Ù T

T

Inference (reminder)

§ Method 1: model-checking
§ For every possible world, if a is true make sure that is b true too

§ Method 2: theorem-proving
§ Search for a sequence of proof steps (applications of inference rules) leading

from a to b

§ Sound algorithm: everything it claims to prove is in fact entailed
§ Complete algorithm: every that is entailed can be proved

Simple theorem proving: Forward chaining

§ Forward chaining applies Modus Ponens to generate new facts:
§ Given X1 Ù X2 Ù … Xn Þ Y and X1, X2, …, Xn, infer Y

§ Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

§ Requires KB to contain only definite clauses:
§ (Conjunction of symbols) Þ symbol; or
§ A single symbol (note that X is equivalent to True Þ X)

§ Runs in linear time using two simple tricks:
§ Each symbol Xi knows which rules it appears in
§ Each rule keeps count of how many of its premises are not yet satisfied

Forward chaining algorithm: Details

function PL-FC-ENTAILS?(KB, q) returns true or false
count ← a table, where count[c] is the number of symbols in c’s premise
inferred ← a table, where inferred[s] is initially false for all symbols s
agenda ← a queue of symbols, initially symbols known to be true in KB
while agenda is not empty do

p ← Pop(agenda)
if p = q then return true
if inferred[p] = false then

inferred[p]←true
for each clause c in KB where p is in c.premise do

decrement count[c]
if count[c] = 0 then add c.conclusion to agenda

return false

Reminder about definite clauses: X1 Ù X2 Ù … Ù Xn Þ Y

Forward chaining algorithm: Example

Sentences: A, B, D, A Ù B Þ C, C Ù D Þ E Query: F
A B C D E F A Ù B Þ C C Ù D Þ E

Inferred? F F F F F F Count? 2 2
Agenda? x x x
Inferred? T F F F F F Count? 1 2
Agenda? x x
Inferred? T T F F F F Count? 0 2
Agenda? x x
Inferred? T T T F F F Count? 0 1
Agenda? x
Inferred? T T T T F F Count? 0 0
Agenda? x
Inferred? T T T T T F Count? 0 0
Agenda?

Properties of forward chaining

§ Theorem: FC is sound and complete for definite-clause KBs
§ Soundness: follows from soundness of Modus Ponens (easy to check)
§ Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final set of known-to-be-true symbols as a model m (other ones false)
3. Every clause in the original KB is true in m

Proof: Suppose a clause a1Ù... ÙakÞ b is false in m
Then a1Ù... Ùak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB
5. If KB |= q, q is true in every model of KB, including m

Backward chaining

§ Puzzle to try at home: develop a “Backward chaining algorithm”
§ Then look it up to see if you’ve reproduced the standard algorithm
§ Idea:

§ Keep track of what you’re trying to prove
§ Look for sentences that might get you there

Satisfiability and entailment

§ A sentence is satisfiable if it is true in at least one world
§ Suppose we have a hyper-efficient SAT solver (WARNING: NP-

COMPLETE👿👿👿); how can we use it to test entailment?
§ a |= b
§ iff aÞ b is true in all possible worlds
§ iff ¬(aÞ b) is false in all possible worlds
§ iff a Ù ¬b is false in all possible worlds, i.e., unsatisfiable

§ So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

§ Efficient SAT solvers operate on conjunctive normal form

Conjunctive normal form (CNF)

§ Every sentence can be expressed as a conjunction of clauses
§ Each clause is a disjunction of literals
§ Each literal is a symbol or a negated symbol
§ (A v ¬B v ¬C) Ù (¬A) Ù (¬D v B v C v E v F) Ù (¬E v ¬F) Ù (B v E)
§ Convert anything to CNF with standard transformations!

§ At_1,1_0 Þ (Wall_0,1 Û Blocked_W_0)
§ At_1,1_0 Þ ((Wall_0,1 Þ Blocked_W_0) Ù (Blocked_W_0 ÞWall_0,1))
§ ¬At_1,1_0 v ((¬Wall_0,1 v Blocked_W_0) Ù (¬Blocked_W_0 v Wall_0,1))
§ (¬At_1,1_0 v ¬Wall_0,1 v Blocked_W_0) Ù

(¬At_1,1_0 v ¬Blocked_W_0 v Wall_0,1)

Replace biconditional by two implications

Replace a Þ b by ¬a v b

Distribute v over Ù

Distributivity

§ (A Ú B) Ù C = (A Ù C) Ú (B Ù C)
§ (I’m in SF or I’m in Berkeley) and I’m alive
§ (I’m in SF and I’m alive) or (I’m in Berkeley and I’m alive)
§ (A Ù B) Ú C = (A Ú C) Ù (B Ú C)
§ ¬(A Ù B) = (¬A Ú¬B)
§ It’s not the case that (I’m alive and I’m kicking)
§ (I’m not alive) or (I’m not kicking)
§ ¬(A Ú B) = (¬A Ù¬B)

Reduction to CNF

1. Get rid of Û
§ Replace aÛ b with (aÞ b) Ù (bÞ a)
§ a and b could be long expressions, not just symbols

2. Get rid of Þ
§ Replace aÞ b with b Ú ¬a

3. Distribute ¬s to lower levels
§ Replace ¬(a Ù ¬b) with ¬a Ú b

4. If any Ús are at a higher level than Ùs, distribute down
§ Replace (a Ù b Ù 𝛾) Ú (𝜀 Ù 𝛿) with…
§ (a Ú 𝜀) Ù (b Ú 𝜀) Ù (𝛾 Ú 𝜀) Ù (a Ú 𝛿) Ù (b Ú 𝛿) Ù (𝛾 Ú 𝛿)

Goal: (A v ¬B v ¬C) Ù (¬A) Ù (¬D v B v C v E v F) Ù (¬E v ¬F) Ù (B v E)

Depth first search solver

function DFSS(clauses, symbols, partmodel={}) returns true or false
if every clause in clauses is true in partmodel then return true
if some clause in clauses is false in partmodel then return false
clauses ← every clause in clauses that is neither true nor false
P, value ←FIND-PURE-SYMBOL(symbols, clauses, partmodel)
if P is non-null then return DPLL(clauses, symbols–P, partmodel∪{P=value})
P, value ←FIND-UNIT-CLAUSE(clauses, partmodel)
if P is non-null then return DPLL(clauses, symbols–P, partmodel∪{P=value})
P ← First(symbols); rest ← Rest(symbols)
return or(DFSS(clauses, rest, partmodel∪{P=true}),

DFSS(clauses, rest, partmodel∪{P=false}))

Reminder of conjunctive normal form: (A Ú B) Ù (A Ú ¬C Ú D) Ù (C Ú ¬B) Ù (B)

clauses

Tricks go here

Efficient SAT solvers

§ DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers
§ Recursive depth-first search over partial models with some extras:

§ Early termination: stop if
§ all clauses are satisfied; e.g., (A Ú B) Ù (A Ú ¬C) is satisfied by {A=true}
§ any clause is falsified; e.g., (A Ú B) Ù (A Ú ¬C) is falsified if {A=false, B=false}

§ Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have
the same sign, then give the symbol that value
§ E.g., A is positive in every clause of (A Ú B) Ù (A Ú ¬C) Ù (C Ú ¬B) so set it to true

§ Unit clauses: if clause has one unresolved literal, set symbol to satisfy clause
§ E.g., if A=false, (A Ú B) Ù (¬B Ú ¬C) becomes (false Ú B) Ù (¬B Ú ¬C), so set B=true
§ Satisfying the unit clauses often leads to further propagation, new unit clauses, etc.

clauses

DPLL algorithm

function DPLL(clauses, symbols, partmodel={}) returns true or false
if every clause in clauses is true in partmodel then return true
if some clause in clauses is false in partmodel then return false
clauses ← every clause in clauses that is not true (or false)
P, value ←FIND-PURE-SYMBOL(symbols, clauses, partmodel)
if P is non-null then return DPLL(clauses, symbols–P, partmodel∪{P=value})
P, value ←FIND-UNIT-CLAUSE(clauses, partmodel)
if P is non-null then return DPLL(clauses, symbols–P, partmodel∪{P=value})
P ← First(symbols); rest ← Rest(symbols)
return or(DPLL(clauses, rest, partmodel∪{P=true}),

DPLL(clauses, rest, partmodel∪{P=false}))

Reminder of conjunctive normal form: (A Ú B) Ù (A Ú ¬C Ú D) Ù (C Ú ¬B) Ù (B)

clauses

*clause with 1 unresolved literal

DPLL Example

§ Start with (A Ú B) Ù (¬A Ú ¬C) Ù (C Ú ¬B) Ù (A Ú B Ú C)
§ No pure symbols or unit clauses

§ (T Ú B) Ù (¬T Ú ¬C) Ù (C Ú ¬B) Ù (T Ú B Ú C)
§ Remove satisfied clauses
§ (¬T Ú ¬C) Ù (C Ú ¬B)
§ B is a pure symbol – set it to false
§ (¬T Ú ¬C) Ù (C Ú ¬F)
§ Remove satisfied clauses
§ (¬T Ú ¬C)
§ C is a pure symbol
§ (¬T Ú ¬F)
§ All clauses satisfied!

§ (F Ú B) Ù (¬F Ú ¬C) Ù (C Ú ¬B) Ù (F Ú B Ú C)

(also a unit clause btw because the clause has one unresolved literal)

Question: what partial model are we dealing
with at this point? (What is a partial model?)

Efficiency

§ Naïve implementation of DPLL: solve ~100 variables
§ Extras:

§ Smart variable and value ordering
§ Divide and conquer
§ Caching unsolvable subcases as extra clauses to avoid redoing them
§ Cool indexing and incremental recomputation tricks so that every step of the

DPLL algorithm is efficient (typically O(1))
§ Index of clauses in which each variable appears in positive / negative form
§ Keep track number of satisfied clauses, update when variables assigned
§ Keep track of number of remaining literals in each clause

§ Real implementation of DPLL: solve ~100,000,000 variables

SAT solvers in practice

§ Circuit verification: does this VLSI circuit compute the right answer?
§ Software verification: does this program compute the right answer?
§ Software synthesis: what program computes the right answer?
§ Protocol verification: can this security protocol be broken?
§ Protocol synthesis: what protocol is secure for this task?
§ Lots of combinatorial problems: what is the solution?
§ Planning: how can I eat all the dots???

Resolution (briefly)

§ Every CNF clause can be written as
§ Conjunction of symbols Þ disjunction of symbols
§ A Ú B Ú ¬C Ú ¬D = C Ù D Þ A Ú B

§ The resolution inference rule takes two such clauses and infers a
new one by resolving complementary symbols:

§ Example: A Ù B Ù C Þ U Ú V
D Ù E Ù U Þ X Ú Y
A Ù B Ù C Ù D Ù E Þ V Ú X Ú Y

§ Sentence unsatistfiable iff repeated resolution produces () Þ ()
§ Resolution is complete for propositional logic, but exp-time

A knowledge-based agent

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base

t, an integer, initially 0
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action ← ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t←t+1
return action

Planning as satisfiability

§ Given a hyper-efficient SAT solver, can we use it to make plans?
§ Yes, for fully observable, deterministic case
§ For T = 1 to ¥,

§ Initialize the KB with PacPhysics for T time steps
§ Assert goal is true at time T

§ Planning problem is solvable iff there is some satisfying
assignment

§ Solution obtained from truth values of action variables
§ Read off action variables from SAT-solver solution

Basic PacPhysics for Planning

§ Map: where the walls are and aren’t, where the food is and isn’t
§ Initial state: Pacman start location (exactly one place), ghosts
§ Actions: Pacman does exactly one action at each step
§ Transition model:

§ <at x,y_t> Û [at x,y_t-1 and stayed put] v [next to x,y_t-1 and moved to x,y]
§ <food x,y_t> Û [food x,y_t-1 and not eaten]
§ <ghostB x,y_t> Û […..]

§ Assertion of goal attainment: Pacman achieves the goal by time T
(not really “physics”)

Reminder: Partially observable Pacman
§ Basic question: where am I?
§ Variables:

§ Wall_0,0, Wall_0,1, …
§ Blocked_W_0, Blocked_N_0, …, Blocked_W_1, …
§ W_0 , N_0, …, W_1, …
§ At_0,0_0 , At_0,1_0, …, At_0,0_1 , …

§ Sensor model:
§ Blocked_W_0 Û ((At_1,1_0 ÙWall_0,1) v

(At_1,2_0 ÙWall_0,2) v
(At_1,3_0 ÙWall_0,3) v ….)

§ Map: where are the walls
§ Initial state: Pacman definitely somewhere
§ Domain constraints: e.g. only one action per timestep
§ Transition model: how state variables change (or don’t)

State estimation

§ State estimation means keeping track of what’s true now
§ A logical agent can just ask itself!

§ E.g., ask whether KB Ù <actions> Ù <percepts> |= At_2,2_6

§ This is “lazy”: it analyzes one’s whole life history at each step!
§ A more “eager” form of state estimation:

§ After each action and percept
§ For each state variable X_t

§ If KB Ù action_t-1 Ù percept_t |= X_t, add X_t to KB
§ If KB Ù action_t-1 Ù percept_t |= ¬X_t, add ¬X_t to KB

Example: Localization in a known map

§ Initialize the KB with PacPhysics for T time steps
§ Run the Pacman agent for T time steps:

§ After each action and percept
§ For each variable At_x,y_t

§ If KB Ù action_t-1 Ù percept_t |= At_x,y_t, add At_x,y_t to KB
§ If KB Ù action_t-1 Ù percept_t |= ¬ At_x,y_t, add ¬ At_x,y_t to KB

§ Choose an action

§ Pacman’s possible locations are those that are not provably false

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

SOUTH

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

SOUTH

SOUTH

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

SOUTH

SOUTH

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

WEST

Localization with random movement

State estimation contd.

§ Is the eager method enough for accurate state
estimation?
§ No! There can be cases where neither Xt nor ¬Xt is

entailed, and neither Yt nor ¬Yt is entailed, but
some constraint, e.g., Xt v Yt, is entailed

§ E.g., the study at time t was flawed or meat causes
cancer

§ Exact state estimation is intractable in general
§ Requires keeping track of properties of

combinations of state variables

Example: Mapping from a known relative location

§ Without loss of generality, call the initial location 0,0
§ The percept tells Pacman which actions work, so he always knows where he is

§ “Dead reckoning”

§ Initialize the KB with PacPhysics for T time steps, starting at 0,0
§ Run the Pacman agent for T time steps

§ At each time step
§ Update the KB with previous action and new percept facts
§ For each wall variable Wall_x,y

§ If Wall_x,y is entailed, add to KB
§ If ¬Wall_x,y is entailed, add to KB

§ Choose an action

§ The wall variables constitute the map

Mapping demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

NORTH

EAST

SOUTH

Example: Simultaneous localization and mapping

§ Often, dead reckoning won’t work in the real world
§ E.g., sensors just count the number of adjacent walls (0,1,2,3 = 2 bits)

§ Pacman doesn’t know which actions work, so he’s “lost”
§ So if he doesn’t know where he is, how does he build a map???

§ Initialize the KB with PacPhysics for T time steps, starting at 0,0
§ Run the Pacman agent for T time steps

§ At each time step
§ Update the KB with previous action and new percept facts
§ For each x,y, add either Wall_x,y or ¬Wall_x,y to KB, if entailed
§ For each x,y, add either At_x,y_t or ¬At_x,y_t to KB, if entailed
§ Choose an action

Summary

§ Logical inference computes entailment relations among sentences
§ Theorem provers apply inference rules to sentences

§ Forward chaining applies modus ponens with definite clauses; linear time
§ Resolution is complete for PL but exponential time in the worst case

§ SAT solvers based on DPLL provide incredibly efficient inference
§ Logical agents can do localization, mapping, SLAM, planning (and

many other things) just using one generic inference algorithm on
one knowledge base

