Any questions about previous logic lectures?

Pacman’s knowledge base: Transition model

How does each *state variable* at each time gets its value?

- Here we care about location variables, e.g., \(\text{At}_3,3_17 \)

A state variable \(X \) gets its value according to a *successor-state axiom*

\[
X_t \Leftrightarrow [X_{t-1} \land \neg(\text{some action}_{t-1} \text{ made it false})] \lor \\
[\neg X_{t-1} \land (\text{some action}_{t-1} \text{ made it true})]
\]

For Pacman location:

- \(\text{At}_3,3_17 \Leftrightarrow [\text{At}_3,3_16 \land \neg((\neg \text{Wall}_3,4 \land \text{N}_16) \lor (\neg \text{Wall}_4,3 \\
\land \text{E}_16) \lor ...)] \\
\lor [\neg \text{At}_3,3_16 \land ((\text{At}_3,2_16 \land \neg \text{Wall}_3,3 \land \text{N}_16) \lor \\
(\text{At}_2,3_16 \land \neg \text{Wall}_3,3 \land \text{E}_16) \lor ...)]
\]

\(\text{Food}_3,3_17 \Leftrightarrow ?? \)
Reminder: Partially observable Pacman

- Basic question: where am I?
- Variables:
 - Wall_0,0, Wall_0,1, ...
 - Blocked_W_0, Blocked_N_0, ..., Blocked_W_1, ...
 - W_0, N_0, ..., W_1, ...
 - At_0,0_0, At_0,1_0, ..., At_0,0_1, ...
- Sensor model:
 - Blocked_W_0 ⇔ (At_1,1_0 ∧ Wall_0,1) v
 (At_1,2_0 ∧ Wall_0,2) v
 (At_1,3_0 ∧ Wall_0,3) v ...
- Map: where are the walls
- Initial state: Pacman definitely somewhere
- Domain constraints: e.g. only one action per timestep
- Transition model: how state variables change (or don’t)
Localization demo

- Percept
- Action
- Percept
- Action
- Percept
- Percept
Localization demo

- Percept
- Action: WEST
- Percept
- Action
- Percept
- Action
- Percept
Localization demo

- Percept
- Action: *WEST*
- Percept
- Action
- Percept
- Action
- Percept
Localization demo

- Percept
- Action \textit{WEST}
- Percept
- Action \textit{WEST}
- Percept
Localization demo

- Percept
- Action *WEST*
- Percept
- Action *WEST*
- Percept
- Action
- Percept
Localization demo

- Percept
- Action: WEST
- Percept
- Action: WEST
- Percept
- Action: WEST
Localization demo

- Percept
- Action: WEST
- Percept
- Action: WEST
- Percept
- Action: WEST
- Percept
Example: Mapping from a known relative location

- Without loss of generality, call the initial location 0,0
- The percept tells Pacman which actions work, so he always knows where he is
 - “Dead reckoning”
- Initialize the KB with **PacPhysics** for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
 - At each time step
 - Update the KB with previous action and new percept facts
 - For each wall variable $Wall_{x,y}$
 - If $Wall_{x,y}$ is entailed, add to KB
 - If $\neg Wall_{x,y}$ is entailed, add to KB
 - Choose an action
- The wall variables constitute the map
Mapping demo

- Percept
- Action: NORTH
- Percept
- Action: EAST
- Percept
- Action: SOUTH
- Percept
Example: Simultaneous localization and mapping

- Often, dead reckoning won’t work in the real world
 - E.g., sensors just count the *number* of adjacent walls (0,1,2,3 = 2 bits)
- Pacman doesn’t know which actions work, so he’s “lost”
 - So if he doesn’t know where he is, how does he build a map???
- Initialize the KB with *PacPhysics* for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
 - At each time step
 - Update the KB with previous action and new percept facts
 - For each x,y, add either $\text{Wall}_{x,y}$ or $\neg\text{Wall}_{x,y}$ to KB, if entailed
 - For each x,y, add either $\text{At}_{x,y,t}$ or $\neg\text{At}_{x,y,t}$ to KB, if entailed
 - Choose an action
Resolution (briefly)

- Every CNF clause can be written as
 - Conjunction of symbols ⇒ disjunction of symbols
 - \(A \lor B \lor \neg C \lor \neg D = C \land D \Rightarrow A \lor B \)
 - The resolution inference rule takes two such clauses and infers a new one by **resolving** complementary symbols:
 - Example: \(A \land B \land C \Rightarrow U \lor V \)
 - \(D \land E \land U \Rightarrow X \lor Y \)
 - \(A \land B \land C \land D \land E \Rightarrow V \lor X \lor Y \)

- Sentence unsatisfiable iff repeated resolution produces \(() \Rightarrow () \)
- Resolution is complete for propositional logic, but exp-time
Summary

- Logical inference computes entailment relations among sentences
- Theorem provers apply inference rules to sentences
 - Forward chaining applies modus ponens with definite clauses; linear time
 - Resolution is complete for PL but exponential time in the worst case
- SAT solvers based on DPLL provide incredibly efficient inference
- Logical agents can do localization, mapping, SLAM, planning (and many other things) just using one generic inference algorithm on one knowledge base
CS 188: Artificial Intelligence

First-Order Logic

Slides mostly from Stuart Russell
University of California, Berkeley
Spectrum of representations

(a) Atomic
Search, game-playing

(b) Factored
Planning, propositional logic, Bayes nets

(b) Structured
First-order logic, databases, logic programs, probabilistic programs
Expressive power

- **Rules of chess:**
 - 100,000 pages in propositional logic
 - 1 page in first-order logic

- **Rules of Pacman:**
 - $\forall t \text{Alive}(t) \Leftrightarrow$

 $$[\text{Alive}(t-1) \land \neg \exists g,x,y [\text{Ghost}(g) \land \text{At}(\text{Pacman},x,y,t-1) \land \text{At}(g,x,y,t-1)]]$$
Possible worlds

- A possible world of five objects:
 - “left leg” unary function (arity is # arguments)
 - “on head” binary relation
 - “brother” binary relation
 - “person” unary relation
 - “king” unary relation
 - “crown” unary relation
 - “John” constant (0-ary function)
 - “Richard” constant (0-ary function)

- If a function/relation/constant is mentioned
- World must have object(s) plus definitions of those functions/relations/constants
A possible world for FOL consists of:

- A non-empty set of objects
- For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
- For each k-ary function in the language, a mapping from k-tuples of objects to objects
- For each constant symbol, a particular object (can think of constants as 0-ary functions)
Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)

Knows(A, BFF(B))
Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)

How many possible worlds?
Syntax and semantics: Terms

- A term is something that refers to an object; it can be
 - A constant symbol, e.g., A, B, EvilKingJohn
 - The possible world fixes these referents
 - A function symbol with terms as arguments, e.g., BFF(EvilKingJohn)
 - The possible world specifies the value of the function, given the referents of the terms
 - BFF(EvilKingJohn) -> BFF(2) -> 3
 - A logical variable, e.g., x
 - (more later)
Syntax and semantics: Atomic sentences

- An atomic sentence is an elementary proposition (cf symbols in PL)
 - A predicate symbol with terms as arguments, e.g., \(\text{Knows}(A, \text{BFF}(B)) \)
 - \(\text{Knows}(A, \text{BFF}(B)) \rightarrow \text{Knows}(1, \text{BFF}(2)) \rightarrow \text{Knows}(1, 3) \rightarrow F \)
 - True iff the objects referred to by the terms are in the relation referred to by the predicate
 - An equality between terms, e.g., \(\text{BFF}(\text{BFF}(\text{BFF}(B))) = B \)
 - True iff the terms refer to the same objects
 - \(\text{BFF}(\text{BFF}(\text{BFF}(B))) = B \rightarrow \text{BFF}(\text{BFF}(\text{BFF}(2))) = 2 \rightarrow \text{BFF}(\text{BFF}(3)) = 2 \rightarrow \text{BFF}(1) = 2 \rightarrow 2 = 2 \rightarrow T \)
Syntax and semantics: Complex sentences

- Sentences with logical connectives
 \(\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta \)

- Sentences with universal or existential quantifiers, e.g.,
 \(\forall x \text{ Knows}(x, \text{BFF}(x)) \)
 - True in world \(w \) iff true in all extensions of \(w \) where \(x \) refers to an object in \(w \)
 - \(x \rightarrow 1: \text{Knows}(1, \text{BFF}(1)) \rightarrow \text{Knows}(1, 2) \rightarrow T \)
 - \(x \rightarrow 2: \text{Knows}(2, \text{BFF}(2)) \rightarrow \text{Knows}(2, 3) \rightarrow T \)
 - \(x \rightarrow 3: \text{Knows}(3, \text{BFF}(3)) \rightarrow \text{Knows}(3, 1) \rightarrow F \)
Syntax and semantics: Complex sentences

- Sentences with logical connectives
 \(\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \implies \beta, \alpha \iff \beta \)
- Sentences with universal or existential quantifiers, e.g.,
 \(\exists x \text{ Knows}(x, \text{BFF}(x)) \)
 - True in world \(w \) iff true in some extension of \(w \) where \(x \) refers to an object in \(w \)
 - \(x \to 1: \text{Knows}(1, \text{BFF}(1)) \to \text{Knows}(1,2) \to T \)
 - \(x \to 2: \text{Knows}(2, \text{BFF}(2)) \to \text{Knows}(2,3) \to T \)
 - \(x \to 3: \text{Knows}(3, \text{BFF}(3)) \to \text{Knows}(3,1) \to F \)
Fun with sentences

- Everyone knows President Obama
 - $\forall n \text{ Person}(n) \Rightarrow \text{Knows}(n,\text{Obama})$

- There is someone that nobody else knows
 - $\exists s \text{ Person}(s) \land \forall n (\text{Person}(n) \land \neg(n = s)) \Rightarrow \neg\text{Knows}(n,s)$

- Everyone knows someone
 - $\forall x \text{ Person}(x) \Rightarrow \exists y \text{ Person}(y) \land \text{Knows}(x,y)$
 - $\forall x (\text{Person}(x) \Rightarrow \exists y (\text{Person}(y) \land \text{Knows}(x,y)))$
More fun with sentences

- Any two people of the same nationality speak a common language
 - `Nationality(x, n) – x has nationality n`
 - `Speaks(x, l) – x speaks language l`
 - `∀x, y [∃ n Nationality(x, n) ∧ Nationality(y, n)] ⊨ (∃ l Speak(x, l) ∧ Speak(y, l))`
 - `∀t (Alive(t) ↔ [Alive(t-1) ∧ ¬∃ g, x, y [Ghost(g) ∧ At(Pacman, x, y, t-1) ∧ At(g, x, y, t-1)]]))`
Conciseness of first order logic

- Pacman can’t be in two places at once
 - FOL: $\forall x_1, y_1, x_2, y_2, t \, (\text{At}(x_1, y_1, t) \land \text{At}(x_2, y_2, t)) \Rightarrow (x_1 = x_2 \land y_1 = y_2)$
 - PL: $\neg (\text{At}_1,1_0 \land \text{At}_1,2_0) \land \neg (\text{At}_1,1_0 \land \text{At}_1,3_0) \land \neg (\text{At}_1,1_0 \land \text{At}_2,1_0) \land \neg (\text{At}_1,1_0 \land \text{At}_2,2_0) \land \neg (\text{At}_1,1_0 \land \text{At}_2,3_0) \land \neg (\text{At}_1,1_0 \land \text{At}_3,1_0) \land \neg (\text{At}_1,1_0 \land \text{At}_3,2_0) \land \neg (\text{At}_1,1_0 \land \text{At}_3,3_0) \land ...$
 - And that’s just if he’s in the bottom left at the first timestep
Inference in FOL

- Entailment is defined exactly as for propositional logic:
 - \(\alpha \models \beta \) ("\(\alpha \) entails \(\beta \)"") iff in every world where \(\alpha \) is true, \(\beta \) is also true
 - E.g., \(\forall x \text{Knows}(x,\text{Obama}) \) entails \(\exists y \forall x \text{Knows}(x,y) \)

- In FOL, we can go beyond just answering “yes” or “no”; given an existentially quantified query, return a substitution (or binding) for the variable(s) such that the resulting sentence is entailed:
 - KB = \(\forall x \text{Knows}(x,\text{Obama}) \)
 - Query = \(\exists y \forall x \text{Knows}(x,y) \)
 - Answer = Yes, \(\sigma = \{y/\text{Obama}\} \)
 - Notation: \(\alpha \sigma \) means applying substitution \(\sigma \) to sentence \(\alpha \)
 - E.g., if \(\alpha = \forall x \text{Knows}(x,y) \) and \(\sigma = \{y/\text{Obama}\} \), then \(\alpha \sigma = \forall x \text{Knows}(x,\text{Obama}) \)
Inference in FOL: Propositionalization

- Convert \((\text{KB} \land \neg \alpha)\) to PL, use a PL SAT solver to check (un)satisfiability
 - Trick: replace variables with ground terms, convert atomic sentences to symbols
 - \(\exists x \text{ Knows}(x,\text{Obama})\)
 - \(\text{Knows}(X_1,\text{Obama})\)
 - \(\text{Knows}_{X1}_\text{Obama}\)
 - \(\forall x \text{ Knows}(x,\text{Obama})\) and Democrat(Feinstein)
 - \(\text{Knows}(\text{Obama},\text{Obama})\) and Knows(Feinstein,Obama) and Democrat(Feinstein)
 - \(\text{Knows}_{\text{Obama}_\text{Obama}} \land \text{Knows}_{\text{Feinstein}_\text{Obama}} \land \text{Democrat}_{\text{Feinstein}}\)
 - \(\forall x \text{ Knows}(\text{Mother}(x),x)\)
 - \(\text{Knows}(\text{Mother}(\text{Obama}),\text{Obama})\) and Knows(Mother(Mother(Obama)),Mother(Obama))
 - Real trick: for \(k = 1\) to infinity:
 - Get a set of terms: constants, functions of constants, funcs of funcs of constants, ... up to depth \(k\)
 - Propositionalize as if those are all the terms that exist
 - If a contradiction is found, halt; otherwise, continue
 - If FOL sentence is unsatisfiable, will find a contradiction for some finite \(k\) (Herbrand); if not, may continue for ever; semidecidable
Inference in FOL: Lifted inference

- Apply inference rules directly to first-order sentences, e.g.,
 - KB = Person(Socrates), \(\forall x \) Person(x) \(\Rightarrow \) Mortal(x)
 - conclude Mortal(Socrates)
- The general rule is a version of Modus Ponens:
 - Given \(\alpha \Rightarrow \beta \) and \(\alpha' \), where \(\alpha \sigma = \alpha' \sigma \) for some substitution \(\sigma \), conclude \(\beta \sigma \)
 - \(\sigma \) is \(\{x/\text{Socrates}\} \)
 - Given \(\forall x \) Knows(x,Obama) and \(\forall y, z \) Knows(y,z) \(\Rightarrow \) Likes(y,z)
 - \(\sigma \) is \(\{y/x, z/\text{Obama}\} \), conclude Likes(x,Obama)
- Examples: Prolog (backward chaining), Datalog (forward chaining), production rule systems (forward chaining), resolution theorem provers
FOL is a very expressive formal language

Many domains of common-sense and technical knowledge can be written in FOL (see AIMA Ch. 10)

- circuits, software, planning, law, taxes, network and security protocols, product descriptions, ecommerce transactions, geographical information systems, Google Knowledge Graph, Semantic Web, etc.

Inference is semidecidable in general; many problems are efficiently solvable in practice

Inference technology for logic programming is especially efficient (see AIMA Ch. 9)