CS 188: Artificial Intelligence

Propositional Logic Il (cont.) + First order Logic

pi@’;&f}ig‘;:feifuori? Pacman’s knowledge base: Transition model
How does each state variable at each time gets its value?
= Here we care about location variables, e.g., At 3,3 17
A state variable X gets its value according to a successor-state axiom
= X t< [X_t-1 A —(some action_t-1 made it false)] v
[-X_t-1 A (some action_t-1 made it true)]
For Pacman location:
= At 3,3 17 < [At_3,3 16 A —((—Wall_3,4 AN_16) v (—Wall_4,3
AE_16)v..)]
v [-At_3,3 16 A ((At_3,2 16 A—=Wall_3,3 AN _16)v
University of California, Berkeley (At_2,3_16 A —Wall_3,3 AE_16) v ...)]
Food 3,3 17« ?? Lec 7, Slide 20

Slides mostly from Stuart Russell




Reminder: Partially observable Pacman

Basic question: where am |?

Variables:
= Wall 0,0, Wall_0,1, ...
= Blocked W _0, Blocked N O, ..., Blocked W 1, ..
= WO,NO,..,W.1,..
= At 0,0 0,At 0,1 0,.. At 00 1,..

Sensor model:
= Blocked W 0« ((At_1,1 0 AWall_0,1)v
(At_1,2 0 A Wall_0,2) v
(At_1,3 0 AWall_0,3)v....)

Map: where are the walls

Initial state: Pacman definitely somewhere

Domain constraints: e.g. only one action per timestep
Transition model: how state variables change (or don’t)
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Example: Mapping from a known relative location

Without loss of generality, call the initial location 0,0

The percept tells Pacman which actions work, so he always knows where he is
= “Dead reckoning”

Initialize the KB with PacPhysics for T time steps, starting at 0,0
Run the Pacman agent for T time steps

= At each time step
= Update the KB with previous action and new percept facts
= For each wall variable Wall_x,y
= |f Wall x,y is entailed, add to KB
= |f “Wall x,y is entailed, add to KB
*= Choose an action

The wall variables constitute the map



Mapping demo
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Example: Simultaneous localization and mapping

= Often, dead reckoning won’t work in the real world

= E.g., sensors just count the number of adjacent walls (0,1,2,3 = 2 bits)

= Pacman doesn’t know which actions work, so he’s “lost”

= So if he doesn’t know where he is, how does he build a map???
" |nitialize the KB with PacPhysics for T time steps, starting at 0,0
= Run the Pacman agent for T time steps

= At each time step
= Update the KB with previous action and new percept facts
= For each x,y, add either Wall x,y or =Wall x,y to KB, if entailed
= For each x,y, add either At _x,y tor —At x,y tto KB, if entailed
= Choose an action



clauses

Resolution (briefly)

Reminder of conjunctive normal form: (Av B) A (Av —C v D) A (C v —B) A (B)
= Every CNF clause can be written as

= Conjunction of symbols = disjunction of symbols
= AvBv—-Cv-—=D = CAD=AVB

= The resolution inference rule takes two such clauses and infers a
new one by resolving complementary symbols:

" Example: AABAC =UVYV
DAE AU =XVY
AABACADAE =>VVvXVY
= Sentence unsatistfiable iff repeated resolution produces () = ()

= Resolution is complete for propositional logic, but exp-time



Summary

» Logical inference computes entailment relations among sentences
= Theorem provers apply inference rules to sentences

= Forward chaining applies modus ponens with definite clauses; linear time
= Resolution is complete for PL but exponential time in the worst case

= SAT solvers based on DPLL provide incredibly efficient inference

» Logical agents can do localization, mapping, SLAM, planning (and

many other things) just using one generic inference algorithm on
one knowledge base



CS 188: Artificial Intelligence

First-Order Logic

Slides mostly from Stuart Russell

University of California, Berkeley



Spectrum of representations
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(a) Atomic (b) Factored (b) Structured
Search, Planning, First-order logic,
game-playing propositional logic, databases, logic programs,

Bayes nets probabilistic programs



Expressive power

= Rules of chess:
= 100,000 pages in propositional logic
= 1 page in first-order logic
" Rules of Pacman:
= Yt Alive(t) <
[Alive(t-1) A =3 g,x,y [Ghost(g) A At(Pacman,x,y,t-1) A At(g,x,y,t-1)]]



Possible worlds

= A possible world of five objects:

uﬁ “left leg” unary function (arity is # arguments)
@& “on head” binary relation
N “brother” binary relation
W “person” unary relation
Lo “king” unary relation
% “crown” unary relation
#, “John” constant (0-ary function)
# “Richard” constant (0-ary function)

= |f a function/relation/constant is mentioned

= World must have object(s) plus definitions of
those functions/relations/constants




Possible worlds

= A possible world for FOL consists of: Knows(A, BFF(B))
= A non-empty set of objects
= For each k-ary predicate in the language, a set of N
k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world) o
= For each k-ary function in the language, a "&V
mapping from k-tuples of objects to objects ©

= For each constant symbol, a particular object
(can think of constants as 0-ary functions)



Possible worlds

= A possible world for FOL consists of: Knows(A, BFF(B))
= A non-empty set of objects
= For each k-ary predicate in the language, a set of — 7
k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world) 01
= For each k-ary function in the language, a "Qv
mapping from k-tuples of objects to objects P2

= For each constant symbol, a particular object
(can think of constants as 0-ary functions)



Possible worlds

= A possible world for FOL consists of: Knows(A, BFF(B))

= A non-empty set of objects

= For each k-ary predicate in the language, a set of -~
k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world) o

= For each k-ary function in the language, a %
mapping from k-tuples of objects to objects X

= For each constant symbol, a particular object (3]

(can think of constants as 0-ary functions)

How many possible worlds?



Syntax and semantics: Terms

= Aterm is something that refers to an A B EvilKingJohn
object; it can be

= A constant symbol, e.g., A, B, EvilKingJohn

= The possible world fixes these referents o
= A function symbol with terms as %

arguments, e.g., BFF(EvilKingJohn)
= The possible world specifies the value of the (3 )
function, given the referents of the terms
= BFF(EvilKinglohn) -> BFF(2) -> 3

= Alogical variable, e.g., x

= (more later)



Syntax and semantics: Atomic sentences

= An atomic sentence is an elementary A B EvilKingJohn
proposition (cf symbols in PL)

= A predicate symbol with terms as arguments,
e.g., Knows(A, BFF(B))

= Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F %
= True iff the objects referred to by the terms are x
in the relation referred to by the predicate (3

= An equality between terms, e.g., BFF(BFF(BFF(B)))=B

= True iff the terms refer to the same objects
= BFF(BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 -> BFF(BFF(3))=2
>BFF(1)=2->2=2->T



Syntax and semantics: Complex sentences

= Sentences with logical connectives A B EvilKingJohn

-0, AP, avB a=Ba B
i i i i ~ ~~
= Sentences with universal or existential

guantifiers, e.g., o

= Vx Knows(x, BFF(x)) x%

= True in world w iff true in all extensions of w //79
where x refers to an object in w 05-
= x->1:Knows(1, BFF(1)) -> Knows(1,2) -> T
» x ->2: Knows(2, BFF(2)) -> Knows(2,3) > T —
= x ->3: Knows(3, BFF(3)) -> Knows(3,1) -> F



Syntax and semantics: Complex sentences

= Sentences with logical connectives A B EvilKingJohn
-0, AP, avB a=Ba B

= Sentences with universal or existential
guantifiers, e.g., o

= Ix Knows(x,BFF(x)) XT%\'

= True in world w iff true in some extension of w
where x refers to an object in w O
= x->1: Knows(1,BFF(1)) -> Knows(1,2) -> T
= x->2: Knows(2,BFF(2)) -> Knows(2,3) -> T
= x->3: Knows(3,BFF(3)) -> Knows(3,1) -> F



Fun with sentences

= Everyone knows President Obama

= Vn Person(n) = Knows(n,Obama)

" There is someone that nobody else knows
= 4s Person(s) A ¥n (Person(n) A —=(n =s)) = —Knows(n,s)
" Everyone knows someone

= Vx Person(x) = dy Person(y) A Knows(x,y)
= Vx (Person(x) = 3y (Person(y) A Knows(x,y)))



More fun with sentences

= Any two people of the same nationality speak a common language
= Nationality(x,n) — x has nationality n
= Speaks(x,l) — x speaks language |
= Vx,y [(3 n Nationality(x,n) A Nationality(y,n)) =
(3 | Speaks(x,l) A Speaks(y,1))]

= vt (Alive(t) < [Alive(t-1) A —3 g,x,y [Ghost(g) A At(Pacman,x,y,t-1) A At(g,x,y,t-1)1])



Conciseness of first order logic

= Pacman can’t be in two places at once
" FOL \v/ X1; Y11 X2; yz; t (At(x]_l y11 t) A At(XZI y2; t)) — (Xl = X2 A Y1 = YZ)

= PL:-(At_ 1,1 OAAt 1,2 O)A-(At 1,1 OANAt 1,3 O)A-(At 1,1 OAAt 2,1 O)A-
(At_ 1,1 OAAt 2,2 O)A-(At_ 1,1 OANAt 2,3 0)A-(At_ 1,1 OAAt 3,1 O)A-
(At_ 1,1 OAAt 3,2 0)A-(At 1,1 OAAt_ 3,3 0)A...

= And that’s just if he’s in the bottom left at the first timestep



Inference in FOL

= Entailment is defined exactly as for propositional logic:
" o |=B (“o entails 3”) iff in every world where a is true, 3 is also true
= E.g., Vx Knows(x,0bama) entails 3yVx Knows(x,y)
= |In FOL, we can go beyond just answering “yes” or “no”; given an
existentially quantified query, return a substitution (or binding) for the
variable(s) such that the resulting sentence is entailed:
= KB = Vx Knows(x,0bama)
= Query = dyVx Knows(x,y)
= Answer = Yes, o = {y/Obama}

= Notation: o means applying substitution ¢ to sentence o
= E.g., if a= Vx Knows(x,y) and o = {y/Obama}, then a.c = Vx Knows(x,0bama)



Inference in FOL: Propositionalization

= Convert (KB A —a) to PL, use a PL SAT solver to check (un)satisfiability

= Trick: replace variables with ground terms, convert atomic sentences to symbols

= Jx Knows(x,0bama)
= Knows(X;,0bama)

= Knows_X1 Obama

= Vx Knows(x,0Obama) and Democrat(Feinstein)

= Knows(Obama,Obama) and Knows(Feinstein,Obama) and Democrat(Feinstein)
= Knows_Obama_Obama A Knows_Feinstein_Obama A Democrat_Feinstein

= Vx Knows(Mother(x),x)
= Knows(Mother(Obama),0Obama) and Knows(Mother(Mother(Obama)),Mother(Obama)) .......

= Real trick: for k = 1 to infinity:
= Get a set of terms: constants, functions of constants, funcs of funcs of constants, ... up to depth k
= Propositionalize as if those are all the terms that exist
= |f a contradiction is found, halt; otherwise, continue
= |f FOL sentence is unsatisfiable, will find a contradiction for some finite k
(Herbrand); if not, may continue for ever; semidecidable



Inference in FOL: Lifted inference

= Apply inference rules directly to first-order sentences, e.g.,
= KB = Person(Socrates), Vx Person(x) = Mortal(x)
= conclude Mortal(Socrates)
= The general rule is a version of Modus Ponens:

= Given oo = [ and o, where a.c = o’ for some substitution o, conclude o

» o is {x/Socrates}
* Given Vx Knows(x,0bama) and Vy, z Knows(y,z) = Likes(y,z)
» ois{y/x, z/Obama}, conclude Likes(x,0bama)
= Examples: Prolog (backward chaining), Datalog (forward chaining),
production rule systems (forward chaining), resolution theorem provers



Summary, pointers

" FOL is a very expressive formal language

" Many domains of common-sense and technical knowledge can be
written in FOL (see AIMA Ch. 10)
= circuits, software, planning, law, taxes, network and security protocols,
product descriptions, ecommerce transactions, geographical information
systems, Google Knowledge Graph, Semantic Web, etc.
" Inference is semidecidable in general; many problems are
efficiently solvable in practice

" Inference technology for logic programming is especially efficient
(see AIMA Ch. 9)



