CS 188: Artificial Intelligence

Propositional Logic Il (cont.) + First order Logic

pi@’;&f}ig‘;:feifuori? Pacman’s knowledge base: Transition model
How does each state variable at each time gets its value?
= Here we care about location variables, e.g., At 3,3 17
A state variable X gets its value according to a successor-state axiom
= X t< [X_t-1 A —(some action_t-1 made it false)] v
[-X_t-1 A (some action_t-1 made it true)]
For Pacman location:
= At 3,3 17 < [At_3,3 16 A —((—Wall_3,4 AN_16) v (—Wall_4,3
AE_16)v..)]
v [-At_3,3 16 A ((At_3,2 16 A—=Wall_3,3 AN _16)v
University of California, Berkeley (At_2,3_16 A —Wall_3,3 AE_16) v ...)]
Food 3,3 17« ?? Lec 7, Slide 20

Slides mostly from Stuart Russell

Reminder: Partially observable Pacman

Basic question: where am |?

Variables:
= Wall 0,0, Wall_0,1, ...
= Blocked W _0, Blocked N O, ..., Blocked W 1, ..
= WO,NO,..,W.1,..
= At 0,0 0,At 0,1 0,.. At 00 1,..

Sensor model:
= Blocked W 0« ((At_1,1 0 AWall_0,1)v
(At_1,2 0 A Wall_0,2) v
(At_1,3 0 AWall_0,3)v....)

Map: where are the walls

Initial state: Pacman definitely somewhere

Domain constraints: e.g. only one action per timestep
Transition model: how state variables change (or don’t)

Localization demo

Percept
Action 23239 23229
9 2 > >
Percept 3 2%2% 299232%%2%%
. 2 9 > > T
Action 2922%% 2339
p > TN > > TN)
ercept p :;a; :::’33:: ;
. >
Action 299399 233

Percept

Localization demo

Percept

Action WEST ©edd: 333339 -3
Percept) :::::..:::))
Action :, ,’: > P | 3:
Percept . .3 333333 3-. .
Action) ’ ’ o

Y
v

29 2332399

Percept

Localization demo

Percept
Action WEST
Percept _

Action

Percept

Action ,, °

Percept

Localization demo

Percept
Action WEST
Percept _
Action WEST
Percept

Action

Percept

Localization demo

Percept
Action WEST
Percept
Action WEST
Percept
Action

Percept

Percept
Action
Percept
Action
Percept
Action
Percept

WEST

WEST

WEST

Localization demo

Percept
Action
Percept
Action
Percept
Action
Percept

WEST

WEST

WEST

Localization demo

Example: Mapping from a known relative location

Without loss of generality, call the initial location 0,0

The percept tells Pacman which actions work, so he always knows where he is
= “Dead reckoning”

Initialize the KB with PacPhysics for T time steps, starting at 0,0
Run the Pacman agent for T time steps

= At each time step
= Update the KB with previous action and new percept facts
= For each wall variable Wall_x,y
= |f Wall x,y is entailed, add to KB
= |f “Wall x,y is entailed, add to KB
*= Choose an action

The wall variables constitute the map

Mapping demo

Percept |
Action NORTH
Percept I
Action EAST
Percept T}
Action SOUTH
Percept _J

Example: Simultaneous localization and mapping

= Often, dead reckoning won’t work in the real world

= E.g., sensors just count the number of adjacent walls (0,1,2,3 = 2 bits)

= Pacman doesn’t know which actions work, so he’s “lost”

= So if he doesn’t know where he is, how does he build a map???
" |nitialize the KB with PacPhysics for T time steps, starting at 0,0
= Run the Pacman agent for T time steps

= At each time step
= Update the KB with previous action and new percept facts
= For each x,y, add either Wall x,y or =Wall x,y to KB, if entailed
= For each x,y, add either At _x,y tor —At x,y tto KB, if entailed
= Choose an action

clauses

Resolution (briefly)

Reminder of conjunctive normal form: (Av B) A (Av —C v D) A (C v —B) A (B)
= Every CNF clause can be written as

= Conjunction of symbols = disjunction of symbols
= AvBv—-Cv-—=D = CAD=AVB

= The resolution inference rule takes two such clauses and infers a
new one by resolving complementary symbols:

" Example: AABAC =UVYV
DAE AU =XVY
AABACADAE =>VVvXVY
= Sentence unsatistfiable iff repeated resolution produces () = ()

= Resolution is complete for propositional logic, but exp-time

Summary

» Logical inference computes entailment relations among sentences
= Theorem provers apply inference rules to sentences

= Forward chaining applies modus ponens with definite clauses; linear time
= Resolution is complete for PL but exponential time in the worst case

= SAT solvers based on DPLL provide incredibly efficient inference

» Logical agents can do localization, mapping, SLAM, planning (and

many other things) just using one generic inference algorithm on
one knowledge base

CS 188: Artificial Intelligence

First-Order Logic

Slides mostly from Stuart Russell

University of California, Berkeley

Spectrum of representations

[O
O O
[o
B —» C (@) | @
]]
I |]
B C
(a) Atomic (b) Factored (b) Structured
Search, Planning, First-order logic,
game-playing propositional logic, databases, logic programs,

Bayes nets probabilistic programs

Expressive power

= Rules of chess:
= 100,000 pages in propositional logic
= 1 page in first-order logic
" Rules of Pacman:
= Yt Alive(t) <
[Alive(t-1) A =3 g,x,y [Ghost(g) A At(Pacman,x,y,t-1) A At(g,x,y,t-1)]]

Possible worlds

= A possible world of five objects:

uﬁ “left leg” unary function (arity is # arguments)
@& “on head” binary relation
N “brother” binary relation
W “person” unary relation
Lo “king” unary relation
% “crown” unary relation
#, “John” constant (0-ary function)
“Richard” constant (0-ary function)

= |f a function/relation/constant is mentioned

= World must have object(s) plus definitions of
those functions/relations/constants

Possible worlds

= A possible world for FOL consists of: Knows(A, BFF(B))
= A non-empty set of objects
= For each k-ary predicate in the language, a set of N
k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world) o
= For each k-ary function in the language, a "&V
mapping from k-tuples of objects to objects ©

= For each constant symbol, a particular object
(can think of constants as 0-ary functions)

Possible worlds

= A possible world for FOL consists of: Knows(A, BFF(B))
= A non-empty set of objects
= For each k-ary predicate in the language, a set of — 7
k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world) 01
= For each k-ary function in the language, a "Qv
mapping from k-tuples of objects to objects P2

= For each constant symbol, a particular object
(can think of constants as 0-ary functions)

Possible worlds

= A possible world for FOL consists of: Knows(A, BFF(B))

= A non-empty set of objects

= For each k-ary predicate in the language, a set of -~
k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world) o

= For each k-ary function in the language, a %
mapping from k-tuples of objects to objects X

= For each constant symbol, a particular object (3]

(can think of constants as 0-ary functions)

How many possible worlds?

Syntax and semantics: Terms

= Aterm is something that refers to an A B EvilKingJohn
object; it can be

= A constant symbol, e.g., A, B, EvilKingJohn

= The possible world fixes these referents o
= A function symbol with terms as %

arguments, e.g., BFF(EvilKingJohn)
= The possible world specifies the value of the (3)
function, given the referents of the terms
= BFF(EvilKinglohn) -> BFF(2) -> 3

= Alogical variable, e.g., x

= (more later)

Syntax and semantics: Atomic sentences

= An atomic sentence is an elementary A B EvilKingJohn
proposition (cf symbols in PL)

= A predicate symbol with terms as arguments,
e.g., Knows(A, BFF(B))

= Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F %
= True iff the objects referred to by the terms are x
in the relation referred to by the predicate (3

= An equality between terms, e.g., BFF(BFF(BFF(B)))=B

= True iff the terms refer to the same objects
= BFF(BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 -> BFF(BFF(3))=2
>BFF(1)=2->2=2->T

Syntax and semantics: Complex sentences

= Sentences with logical connectives A B EvilKingJohn

-0, AP, avB a=Ba B
i i i i ~ ~~
= Sentences with universal or existential

guantifiers, e.g., o

= Vx Knows(x, BFF(x)) x%

= True in world w iff true in all extensions of w //79
where x refers to an object in w 05-
= x->1:Knows(1, BFF(1)) -> Knows(1,2) -> T
» x ->2: Knows(2, BFF(2)) -> Knows(2,3) > T —
= x ->3: Knows(3, BFF(3)) -> Knows(3,1) -> F

Syntax and semantics: Complex sentences

= Sentences with logical connectives A B EvilKingJohn
-0, AP, avB a=Ba B

= Sentences with universal or existential
guantifiers, e.g., o

= Ix Knows(x,BFF(x)) XT%\'

= True in world w iff true in some extension of w
where x refers to an object in w O
= x->1: Knows(1,BFF(1)) -> Knows(1,2) -> T
= x->2: Knows(2,BFF(2)) -> Knows(2,3) -> T
= x->3: Knows(3,BFF(3)) -> Knows(3,1) -> F

Fun with sentences

= Everyone knows President Obama

= Vn Person(n) = Knows(n,Obama)

" There is someone that nobody else knows
= 4s Person(s) A ¥n (Person(n) A —=(n =s)) = —Knows(n,s)
" Everyone knows someone

= Vx Person(x) = dy Person(y) A Knows(x,y)
= Vx (Person(x) = 3y (Person(y) A Knows(x,y)))

More fun with sentences

= Any two people of the same nationality speak a common language
= Nationality(x,n) — x has nationality n
= Speaks(x,l) — x speaks language |
= Vx,y [(3 n Nationality(x,n) A Nationality(y,n)) =
(3 | Speaks(x,l) A Speaks(y,1))]

= vt (Alive(t) < [Alive(t-1) A —3 g,x,y [Ghost(g) A At(Pacman,x,y,t-1) A At(g,x,y,t-1)1])

Conciseness of first order logic

= Pacman can’t be in two places at once
" FOL \v/ X1; Y11 X2; yz; t (At(x]_l y11 t) A At(XZI y2; t)) — (Xl = X2 A Y1 = YZ)

= PL:-(At_ 1,1 OAAt 1,2 O)A-(At 1,1 OANAt 1,3 O)A-(At 1,1 OAAt 2,1 O)A-
(At_ 1,1 OAAt 2,2 O)A-(At_ 1,1 OANAt 2,3 0)A-(At_ 1,1 OAAt 3,1 O)A-
(At_ 1,1 OAAt 3,2 0)A-(At 1,1 OAAt_ 3,3 0)A...

= And that’s just if he’s in the bottom left at the first timestep

Inference in FOL

= Entailment is defined exactly as for propositional logic:
" o |=B (“o entails 3”) iff in every world where a is true, 3 is also true
= E.g., Vx Knows(x,0bama) entails 3yVx Knows(x,y)
= |In FOL, we can go beyond just answering “yes” or “no”; given an
existentially quantified query, return a substitution (or binding) for the
variable(s) such that the resulting sentence is entailed:
= KB = Vx Knows(x,0bama)
= Query = dyVx Knows(x,y)
= Answer = Yes, o = {y/Obama}

= Notation: o means applying substitution ¢ to sentence o
= E.g., if a= Vx Knows(x,y) and o = {y/Obama}, then a.c = Vx Knows(x,0bama)

Inference in FOL: Propositionalization

= Convert (KB A —a) to PL, use a PL SAT solver to check (un)satisfiability

= Trick: replace variables with ground terms, convert atomic sentences to symbols

= Jx Knows(x,0bama)
= Knows(X;,0bama)

= Knows_X1 Obama

= Vx Knows(x,0Obama) and Democrat(Feinstein)

= Knows(Obama,Obama) and Knows(Feinstein,Obama) and Democrat(Feinstein)
= Knows_Obama_Obama A Knows_Feinstein_Obama A Democrat_Feinstein

= Vx Knows(Mother(x),x)
= Knows(Mother(Obama),0Obama) and Knows(Mother(Mother(Obama)),Mother(Obama))

= Real trick: for k = 1 to infinity:
= Get a set of terms: constants, functions of constants, funcs of funcs of constants, ... up to depth k
= Propositionalize as if those are all the terms that exist
= |f a contradiction is found, halt; otherwise, continue
= |f FOL sentence is unsatisfiable, will find a contradiction for some finite k
(Herbrand); if not, may continue for ever; semidecidable

Inference in FOL: Lifted inference

= Apply inference rules directly to first-order sentences, e.g.,
= KB = Person(Socrates), Vx Person(x) = Mortal(x)
= conclude Mortal(Socrates)
= The general rule is a version of Modus Ponens:

= Given oo = [and o, where a.c = o’ for some substitution o, conclude o

» o is {x/Socrates}
* Given Vx Knows(x,0bama) and Vy, z Knows(y,z) = Likes(y,z)
» ois{y/x, z/Obama}, conclude Likes(x,0bama)
= Examples: Prolog (backward chaining), Datalog (forward chaining),
production rule systems (forward chaining), resolution theorem provers

Summary, pointers

" FOL is a very expressive formal language

" Many domains of common-sense and technical knowledge can be
written in FOL (see AIMA Ch. 10)
= circuits, software, planning, law, taxes, network and security protocols,
product descriptions, ecommerce transactions, geographical information
systems, Google Knowledge Graph, Semantic Web, etc.
" Inference is semidecidable in general; many problems are
efficiently solvable in practice

" Inference technology for logic programming is especially efficient
(see AIMA Ch. 9)

