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Uncertainty

§ The real world is rife with uncertainty!
§ E.g., if I leave for SFO 60 minutes before my flight, will I be there in time?

§ Problems:
§ partial observability (road state, other drivers’ plans, etc.)
§ noisy sensors (radio traffic reports, Google maps)
§ immense complexity of modelling and predicting traffic, security line, etc.
§ lack of knowledge of world dynamics (will tire burst? will I get in crash?)

§ Probabilistic assertions summarize effects of ignorance and laziness
§ Combine probability theory + utility theory -> decision theory

§ Maximize expected utility : a* = argmaxa ås P(s | a) U(s)



Basic laws of probability (discrete)

§ Begin with a set W of possible worlds
§ E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

§ A probability model assigns a number P(w) to each world w
§ E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6. 

§ These numbers must satisfy
§ 0 £ P(w)

§ åw ÎW P(w) = 1
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Basic laws contd.

§ An event is any subset of W
§ E.g., “roll < 4” is the set {1,2,3}
§ E.g., “roll is odd” is the set {1,3,5}

§ The probability of an event is the sum of probabilities over its worlds
§ P(A) = åw Î A P(w)
§ E.g., P(roll < 4) = P(1) + P(2) + P(3) = 1/2

§ De Finetti (1931): anyone who bets according to probabilities that 
violate these laws can be forced to lose money on every set of bets
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Random Variables
§ A random variable (usually denoted by a capital letter) is some aspect 

of the world about which we may be uncertain
§ Formally a deterministic function of w
§ The range of a random variable is the set of possible values

§ Odd = Is the dice roll an odd number? ® {true, false} 
§ e.g. Odd(1)=true, Odd(6) = false
§ often write the event Odd=true as odd, Odd=false as ¬odd

§ T = Is it hot or cold? ® {hot, cold}
§ D = How long will it take to get to the airport? ® [0, ¥)
§ LGhost = Where is the ghost? ® {(0,0), (0,1), …}

§ The probability distribution of a random variable X gives the 
probability for each value x in its range (probability of the event X=x)
§ P(X=x) = å {w: X(w)=x} P(w)
§ P(x) for short (when unambiguous)
§ P(X) refers to the entire distribution (think of it as a vector or table)



Probability Distributions

§ Associate a probability with each value; sums to 1

§ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

§ Weather: 

P(T) P(W) P(T,W)

§ Joint distribution

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

Marginal distributions

§ Can’t deduce joint from marginals
§ Can deduce marginals from joint



Making possible worlds

§ In many cases we 
§ begin with random variables and their domains
§ construct possible worlds as assignments of values to all variables

§ E.g., two dice rolls Roll1 and Roll2
§ How many possible worlds?
§ What are their probabilities?

§ Size of distribution for n variables with range size d?
§ For all but the smallest distributions, cannot write out by hand!

dn



Probabilities of events

§ Recall that the probability of an event is the 
sum of probabilities of its worlds:
§ P(A) = åw Î A P(w)

§ So, given a joint distribution over all variables, 
can compute any event probability

§ Probability that it’s hot AND sunny?

§ Probability that it’s hot?

§ Probability that it’s hot OR not foggy?

P(T,W)

§ Joint distribution

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Game

§ 5 volunteers
§ I’ll show you two options of events—pick one
§ I’ll randomly sample an outcome—if your 

event happens you get $1
§ Option 1 in red; Option 2 in black
§ Round 1: Sunny or Hot

§ P(X=x) = å {w: X(w)=x} P(w)
§ Round 2: Cold and foggy or Rainy
§ Round 3: If it’s rainy (I’ll keep sampling until it 

is) then cold or Sunny
§ That’s written cold | rainy

§ Round 4: Foggy | cold or Hot | not rainy
§ Round 5: Hot on the first draw; sunny on the 

next draw or Hot and sunny on the first draw

P(T,W)

§ Joint distribution

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Marginal Distributions

§ Marginal distributions are sub-tables which eliminate variables 
§ Marginalization (summing out): Collapse a dimension by adding

P(X=x) = å
y  
P(X=x, Y=y)

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

0.60
0.10
0.30
0.00

0.50 0.50

P(T)

P(W)



Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

Conditional Probabilities

§ A simple relation between joint and conditional probabilities
§ In fact, this is taken as the definition of a conditional probability

P(b)P(a)

P(a,b)

= P(W=s,T=c) + P(W=r,T=c) + P(W=f,T=c) + P(W=m,T=c) 
= 0.15 + 0.08 + 0.27 + 0.00= 0.50

P(T,W)

P(a | b) = P(a, b)
  P(b)

P(W=s | T=c) = P(W=s,T=c)
     P(T=c)

= 0.15/0.50 = 0.3



Conditional Distributions

§ Distributions for one set of variables given another set

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W | T=c)

0.30
0.16
0.54
0.00

P(W | T=h)

0.90
0.04
0.06
0.00

P(W | T)

0.30
0.16
0.54
0.00

0.90
0.04
0.06
0.00

hot cold hot cold



§ (Dictionary) To bring or restore to a normal condition

§ Procedure:
§ Multiply each entry by a = 1/(sum over all entries)

Normalizing a distribution

All entries sum to ONE

a = 1/0.50 = 2

Normalize

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W,T=c)

0.15
0.08
0.27
0.00

0.30
0.16
0.54
0.00

P(W,T)
P(W | T=c) = P(W,T=c)/P(T=c)
= a P(W,T=c)



The Product Rule

§ Sometimes have conditional distributions but want the joint

P(a | b) = P(a, b)
  P(b)

P(a | b) P(b) = P(a, b) 



The Product Rule: Example

P(W | T) P(T) = P(W, T) 

T P

hot 0.5

cold 0.5

P(T)

P(W | T)

0.30
0.16
0.54
0.00

0.90
0.04
0.06
0.00

hot cold Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W, T)



Game Part II

P(W | T) P(T) = P(W, T) 
hot 0.25

cold 0.75

P(T)

sun | cold 0.30
rain | cold 0.16
fog | cold 0.54
meteor | cold 0.00

hot coldP(W | T)

sun | hot 0.90
rain | hot 0.04
fog | hot 0.06
meteor | hot 0.00

§ 4 Volunteers
§ First I’ll sample hot or cold
§ Then I’ll sample weather from the 

conditional distribution
§ Option 1 in red; Option 2 in black
§ Round 6: Sunny and hot or Foggy 

and cold
§ Round 7: Sunny or Foggy
§ Round 8: Hot | sunny or Cold | 

sunny
§ Round 9: Hot | not foggy or Cold | 

not foggy

 



The Chain Rule

§ A joint distribution can be written as a product of conditional 
distributions by repeated application of the product rule:

§ P(x1, x2, x3) = P(x3 | x1, x2) P(x1, x2) = P(x3 | x1, x2) P(x2 | x1) P(x1)

§ P(x1, x2,…, xn) = Õi P(xi | x1,…, xi-1)



Probabilistic Inference

§ Probabilistic inference: compute a desired probability 
from a probability model
§ Typically for a query variable given evidence
§ E.g., P(airport on time | no accidents) = 0.90
§ These represent the agent’s beliefs given the evidence

§ Probabilities change with new evidence:
§ P(airport on time | no accidents, 5 a.m.) = 0.95
§ P(airport on time | no accidents, 5 a.m., raining) = 0.80
§ Observing new evidence causes beliefs to be updated



Inference by Enumeration
§ Probability model  P(X1, …, Xn) is given
§ Partition the variables X1, …, Xn into sets as follows:

§ Evidence variables: E = e
§ Query variables: Q
§ Hidden variables: H

§ We want:
 P(Q | e)

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H from model to 
get joint of query and evidence

§ Step 3: Normalize

åh  P(Q , h, e)P(Q ,e) = 

X1, …, Xn 

P(Q | e) = a P(Q ,e)



Inference by Enumeration

§ P(S | sun)?
§ 1. Enumerate options with 

sun
§ 2. Sum out irrelevant 

variable(s)
§ 3. Normalize
§ P(S | sun) =
{summer: 0.45/(0.45+0.25), 
winter: 0.25/(0.45+0.25)}

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.10

summer cold rain 0.05

summer cold fog 0.09

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.02

winter hot meteor 0.00

winter cold sun 0.15

winter cold rain 0.20

winter cold fog 0.18

winter cold meteor 0.00

0.45

0.25



§ Obvious problems:

§ Worst-case time complexity O(dn) (exponential in #hidden variables)

§ Space complexity O(dn) to store the joint distribution

§ O(dn) data points to estimate the entries in the joint distribution

Inference by Enumeration



Bayes’ Rule



Bayes’ Rule

§ Write the product rule both ways:
P(a | b) P(b) = P(a, b) = P(b | a) P(a)  

§ Dividing left and right expressions, we get:

§ Why is this at all helpful?

§ Lets us build one conditional from its reverse
§ Often one conditional is tricky but the other one is simple
§ Describes an “update” step from prior P(a) to posterior P(a | b) 

§ Hence provides a simple, formal theory of learning

§ E.g.: d is data, h is hypothesis: 

That’s my rule!

P(a | b) = P(b | a) P(a)
       P(b)

P(h | d) =                        = P(d | h) P(h)     P(d | h) P(h)  .
       P(d)         𝚺h’ P(d|h’) P(h’)



Inference with Bayes’ Rule

§ Example: Diagnostic probability from causal probability:

§ Example:
§ M: meningitis, S: stiff neck

§ Note: posterior probability of meningitis still very small: 0.008 (80x bigger – why?)
§ Note: you should still get stiff necks checked out!  Why?

Example
givens

P(cause | effect) = P(effect | cause) P(cause)
               P(effect)

P(s | m) = 0.8
P(m) = 0.0001
P(s) = 0.01

P(m | s) = P(s | m) P(m)
       P(s) = 

0.8 x 0.0001  .
0.01



§ Two variables X and Y are (absolutely) independent if
"x,y P(x, y) = P(x) P(y)

§ I.e., the joint distribution factors into a product of two simpler distributions

§ Equivalently, via the product rule P(x,y) = P(x|y)P(y),

P(x | y) = P(x)   or    P(y | x) = P(y)

§ Example: two dice rolls Roll1 and Roll2
§ P(Roll1=5, Roll2=3)     =   P(Roll1=5) P(Roll2=3)  =  1/6 x 1/6  =  1/36
§ P(Roll2=3 | Roll1=5)   =   P(Roll2=3)

Independence



Example: Independence

§ n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

2n 



Independence, contd.

§ Independence is incredibly powerful
§ Exponential reduction in representation size

§ Independence is extremely rare!
§ Conditional independence is ubiquitous!!



Conditional Independence



Conditional Independence

§ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

§ X is conditionally independent of Y given Z if and only if: 
"x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if
"x,y,z P(x, y | z) = P(x | z) P(y | z)



Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining



Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Ghostbusters

§ A ghost is in the grid somewhere
§ Sensor readings tell how close a 

square is to the ghost
§ On the ghost: usually red
§ 1 or 2 away: mostly orange
§ 3 or 4 away: typically yellow
§ 5+ away: often green

§ Click on squares until confident 
of location, then “bust”



Video of Demo Ghostbusters with Probability



Ghostbusters model

§ Variables and ranges: 
§ G (ghost location) in {(1,1),…,(3,3)}
§ Cx,y (color measured at square x,y) in

{red,orange,yellow,green}

§ Ghostbuster physics:
§ Uniform prior distribution over ghost location: P(G)
§ Sensor model: P(Cx,y | G) (depends only on distance to G)

§ E.g. P(C1,1 = yellow | G = (1,1) ) = 0.1

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11



Ghostbusters model, contd.

§ P(G, C1,1 , … C3,3) has 9 x 49 = 2,359,296 entries!!!
§ Ghostbuster independence:

§ Are C1,1 and C1,2 independent? 
§ E.g., does P(C1,1 = yellow) = P(C1,1 = yellow | C1,2 = orange) ?

§ Ghostbuster physics again:
§ P(Cx,y | G) depends only on distance to G

§ So P(C1,1 = yellow | G = (2,3) ) = P(C1,1 = yellow | G = (2,3), C1,2 = orange)
§ I.e., C1,1 is conditionally independent of C1,2 given G

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11



Ghostbusters model, contd.

§ Apply the chain rule to decompose the joint probability model:
§ P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G, C1,1) P(C1,3 | G, C1,1, C1,2) … P(C3,3 | G, C1,1, …, C3,2)
§ Now simplify using conditional independence:
§ P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G) P(C1,3 | G) … P(C3,3 | G)
§ I.e., conditional independence properties of ghostbuster physics simplify the probability 

model from exponential to quadratic in the number of squares
§ This is called a Naïve Bayes model:

§ One discrete query variable (often called the class or category variable)
§ All other variables are (potentially) evidence variables
§ Evidence variables are all conditionally independent given the query variable

G

C1,1 C1,2 C3,3



Next time

§ Bayes nets
§ Elementary inference in Bayes nets


