CS 188: Artificial Intelligence

Probability

Slides mostly from Stuart Russell and Peyrin Kao

University of California, Berkeley



Uncertainty

" The real world is rife with uncertainty!

= E.g., if | leave for SFO 60 minutes before my flight, will | be there in time?
" Problems:

= partial observability (road state, other drivers’ plans, etc.)

" noisy sensors (radio traffic reports, Google maps)

=" immense complexity of modelling and predicting traffic, security line, etc.

= |ack of knowledge of world dynamics (will tire burst? will | get in crash?)
" Probabilistic assertions summarize effects of ignorance and laziness

= Combine probability theory + utility theory -> decision theory
* Maximize expected utility : a* = argmax, 2., P(s | a) U(s)



Basic laws of probability (discrete)

" Begin with a set 2 of possible worlds
= E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

= A probability model assigns a number P(w) to each world @
= E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6. N
" These numbers must satisfy 1/6,".”.6 fe.

'OSP(C()) . 31/6.
. Za)eQ P(a))=1



Basic laws contd.

= An event is any subset of (2
=" E.g., “roll<4” is the set {1,2,3}
= E.g., “rollis odd” is the set {1,3,5}
= The probability of an event is the sum of probabilities over its worlds
= P(A) = za)eA P(w)
= Eg., P(roll<4)=P(1)+ P(2) + P(3)=1/2

= De Finetti (1931): anyone who bets according to probabilities that
violate these laws can be forced to lose money on every set of bets



Random Variables

= Arandom variable (usually denoted by a capital letter) is some aspect
of the world about which we may be uncertain

= Formally a deterministic function of o

» The range of a random variable is the set of possible values

= (Odd =Is the dice roll an odd number? — {true, false}
= e.g. Odd(1)=true, Odd(6) = false

= often write the event Odd=true as odd, Odd=false as —odd
= T=lsithotorcold? — {hot, cold}

= D =How long will it take to get to the airport? — [0, «)
" Lot = Where is the ghost? — {(0,0), (0,1), ...}

= The probability distribution of a random variable X gives the
probability for each value x in its range (probability of the event X=x)
. 'D(X:X) = z {w: X(w)=x} P(a))
= P(x) for short (when unambiguous)

= P(X) refers to the entire distribution (think of it as a vector or table)




Probability Distributions

= Associate a probability with each value; sumsto 1

= Temperature: = Weather: \ = Joint distribution
Marginal distributions

P(T,W)
Temperature
hot cold

_ |sun 0.45 |0.15
fg) rain 0.02 |0.08
4y}
v |fo 0.03 |0.27
= g

meteor | 0.00 | 0.00

= Can’t deduce joint from marginals

= Can deduce marginals from joint



Making possible worlds

In many cases we

= begin with random variables and their domains

= construct possible worlds as assignments of values to all variables
E.g., two dice rolls Roll; and Roll,

= How many possible worlds?

= What are their probabilities? dn

Size of distribution for n variables with range size d?
For all but the smallest distributions, cannot write out by hand!



Probabilities of events

= Recall that the probability of an event is the
sum of probabilities of its worlds: = Joint distribution

" P(A)=2,c A Plo)

: = T : P(T.
= So, given a joint distribution over all variables, (T.W)
can compute any event probability Temperature

* Probability that it’s hot AND sunny? hot | cold
_ |sun 045 |0.15
= Probability that it’s hot? fg) rain 0.02 |0.08
3 fog 0.03 |0.27

* Probability that it’s hot OR not foggy? =
meteor | 0.00 |0.00




Game

5 volunteers
I’ll show you two options of events—pick one

I’ll randomly sample an outcome—if your
event happens you get S1

Option 1 in red; Option 2 in black
Round 1: Sunny or Hot
" P(X=X) = 2 (i x(a)=x P(®)
Round 2: Cold and foggy or Rainy
Round 3: If it’s rainy (I'll keep sampling until it
is) then cold or Sunny
» That’s written cold | rainy

Round 4: Foggy | cold or Hot | not rainy

Round 5: Hot on the first draw; sunny on the
next draw or Hot and sunny on the first draw

= Joint distribution

P(T,W)
Temperature
hot cold
sun 0.45 |0.15
g rain 0.02 |0.08
@©
v | fo 0.03 |0.27
= g
meteor |0.00 |0.00




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
» Marginalization (summing out): Collapse a dimension by adding

P(X=x) = Zy P(X=x, Y=y)

Temperature

hot | cold
sun 0.45 |0.15 0.60
rain 0.02 |0.08 0.10

Weather

fog 0.03 |0.27 0.30 P(VV)
meteor | 0.00 |0.00 0.00

0.50 |0.50

P(T)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(b)
P(T,W)
Temperature

_ |sun
() .

< | rain
S fo

= g

meteor

P(a,b)

P(a)

P(W=s | T=c) = P(MF/;?’:TSC) = 0.15/0.50 = 0.3
N

= P(W=s, T=c) + P(W=r,T=c) + P(W=F,T=c) + P(W=m, T=c)
= 0.15 + 0.08 + 0.27 + 0.00= 0.50




Conditional Distributions

= Distributions for one set of variables given another set

Weather

P(W | T=h)
Temperature
hot |cold hot
sun 0.45 |0.15 0.90
rain 0.02 |0.08 0.04
fog 0.03 |0.27 0.06
meteor | 0.00 | 0.00 0.00

P(W| T=c)

cold

0.30
0.16
0.54
0.00

PW|T)
hot cold




= (Dictionary) To bring or restore to a

Normalizing a distribution

Procedure:
* Multiply each entry by = 1/(sum over all entries)

P(W,T)
Temperature
hot

_ | sun 0.45
() .
< | rain 0.02
S f 0.03
0] .
= g
meteor | 0.00

P(W,T=

c)

0.15

0.08

0.27

0.00

normal condition

N\

All entries sum to ONE

P(W | T=c) = P(W, T=c)/P(T=c)

= a P(W, T=c)
0.30
Normalize
0.16
0.54
a=1/0.50=2
0.00




The Product Rule

= Sometimes have conditional distributions but want the joint

P(a | b) P(b) = P(a, b) ) P(a|b)= £a.b)

P(b)
[« -



The Product Rule: Example

P(W | T) P(T) = P(W, T)

PW|T) P(W, T)
hot cold
Temperature
P(T) P
hot cold
T P
sun 0.45 0.15
hot | 0.5 <:> =
< |rain 0.02 |0.08
cold 0.5 ©
g fog 0.03 |0.27
meteor | 0.00 |0.00




Game Part ||

P(W | T) P(T) = P(W, T) )
4 Volunteers hot 0.25
First I'll sample hot or cold cold 0.75

Then I'll sample weather from the
conditional distribution

Option 1 in red; Option 2 in black
Round 6: Sunny and hot or Foggy

and cold sun | hot sun | cold
Round 7: Sunny or Foggy

Round 8: Hot | sunny or Cold |
sunny

Round 9: Hot | not foggy or Cold |
not foggy

PWIT)

hot cold

rain | hot rain | cold

fog | hot fog | cold

meteor | hot meteor | cold




The Chain Rule

= A joint distribution can be written as a product of conditional
distributions by repeated application of the product rule:

" P(xq, X3, X3) = P(X3 | X1, X3) P(X1, X5) = P(X3 | X4, X3) P(X; | 1) P(x1)

" P(x1, Xpyeeey Xp) = L1 P(X; | X400, Xi1)



Probabilistic Inference

Probabilistic inference: compute a desired probability

from a probability model =
= Typically for a query variable given evidence L4 / /

= E.g., P(airport on time | no accidents) = 0.90

= These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:
= P(airport on time | no accidents, 5a.m.) =0.95
= P(airport on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated




Inference by Enumeration

= Probability model P(Xy, ..., X)) is given = We want:

= Partition the variables Xj, ..., X,, into sets as follows: p(Q | 8)
= Evidence variables: E=e
= Query variables: Q

= Hidden variables: H

= Step 1: Select the = Step 2: Sum out H from model to =  Step 3: Normalize
entries consistent get joint of query and evidence
with the evidence
P(Q,e)= 2, P(Q, h,e) P(Q | e)=aP(Q,e)
Peo
0.05
0.25
0.07
0z |

|
|

l
I

I
4




Inference by Enumeration

Season Temp | Weather P
summer hot sun 0.35
= P(S | sun)? /
= 1. Enumerate options with 0.45
sun \
= 2.Sum out irrelevant summer | cold | sun | 0.0
variable(s)
= 3. Normalize
= P(S | sun) = winter hot sun 0.10
{summer: 0.45/(0.45+0.25), /
winter: 0.25/(0.45+0.25)} 0.25 \

winter cold sun 0.15




Inference by Enumeration

= Obvious problems:

= Worst-case time complexity O(d") (exponential in #hidden variables)

= Space complexity O(d") to store the joint distribution

= O(d") data points to estimate the entries in the joint distribution



Bayes’ Rule




Bayes’ Rule

Write the product rule both ways:

P(a | b) P(b) = P(a, b) = P(b | a) P(a) [ thatsmyruer |
Dividing left and right expressions, we get: __
P(a| b) = Blbla) P(a) Js B

P(b)
Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple

= Describes an “update” step from prior P(a) to posterior P(a | b) VRS ¢
= Hence provides a simple, formal theory of learning 2

. o

P(d | h) P(h) _ _P(d | h) P(h)

E.g.: d is data, h is hypothesis: P(h =
g.: dis data, h is hypothesis ( Id) P(d) Zh,P(d|h’)P(h’)




Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(effect | cause) P(cause)

P(cause | effect) =

P(effect)
= Example:
= M: meningitis, S: stiff neck
P(s| m)=0.8
P(m)=0.0001 [ Cemele
givens
P(s) = 0.01

P(s|m)P(m) _ _0.8x0.0001
P(s) - 0.01

P(m|s)=

= Note: posterior probability of meningitis still very small: 0.008 (80x bigger — why?)
= Note: you should still get stiff necks checked out! Why?



Independence

= Two variables X and Y are (absolutely) independent if
vVxy  Plx,y) = P(x) P(y)

= |.e., the joint distribution factors into a product of two simpler distributions

= Equivalently, via the product rule P(x,y) = P(x|y)P(y),

Pix | y)=P(x) or Ply|x)=Ply)

= Example: two dice rolls Roll; and Roll,
* P(Roll{=5, Roll,=3) = P(Roll{=5) P(Roll,=3) = 1/6x1/6 = 1/36
* P(Roll,=3 | Roll;=5) = P(Roll,=3) X




Example: Independence

= n fair, independent coin flips:

P(X)  PX)) P(X:)
H |05 H |05 L H |05
T |05 T |05 T |05
N 7
—

CP(X X, X,)

\

2n




Independence, contd.

" Independence is incredibly powerful

= Exponential reduction in representation size
" Independence is extremely rare!
= Conditional independence is ubiquitous!!




Conditional Independence




Conditional Independence

= Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= X is conditionally independent of Y given Z if and only if:
Vxy,z  Plx|y,z)=Plx|z)

or, equivalently, if and only if
Vx,y,z P,y |z)=Plx|2z)Ply| 2)



Conditional Independence

= \What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= \What about this domain:

" Fire
= Smoke
= Alarm




Ghostbusters

= Aghostisin the grid somewhere

= Sensor readings tell how close a
square is to the ghost
= On the ghost: usually red
= 1 or 2 away: mostly orange
= 3 or 4 away: typically yellow
= 5+ away: often green

= Click on squares until confident
of location, then “bust”




Video of Demo Ghostbusters with Probability




Ghostbusters model

= Variables and ranges:
» G (ghost location) in {(1,1),...,(3,3)}
" C,,(color measured at square x,y) in

{red,orange,yellow,green}

= Ghostbuster physics:
» Uniform prior distribution over ghost location: P(G)

= Sensor model: P(C, , | G) (depends only on distance to G)
" E.g. P(C;;=vellow | G=(1,1))=0.1



Ghostbusters model, contd.

" P(G, Cy 4, ... G33) has 9 x 4° = 2,359,296 entries!!! H
= Ghostbuster independence: 011 0.11
" Are C;; and C, ; independent? 011
= E.g., does P(C; ; = yellow) = P(C; ; = yellow | C; ,= orange) ?

= Ghostbuster physics again:

= P(CX,y | G) depends only on distance to G

" So P(Cy; =vyellow | G=(2,3) ) =P(Cy; = yellow | G=(2,3), C; ,= orange)
" |l.e., C; , is conditionally independent of C, , given G




Ghostbusters model, contd.

Apply the chain rule to decompose the joint probability model:
P(G, Gy, - G33) =P(G) P(Cyy | G) P(Cy, | G, Cyg) P(Cy5 | G, Cg, Cip) o P(G33 | G, Gy, ey Gi)
Now simplify using conditional independence:
P(G, Cy1, ... C33) =P(G) P(Cy1 | G) P(Cy,y | G) P(Cy3 | G) ... P(C35 | G)
l.e., conditional independence properties of ghostbuster physics simplify the probability
model from exponential to quadratic in the number of squares
This is called a Naive Bayes model:

= One discrete query variable (often called the class or category variable)

= All other variables are (potentially) evidence variables
= Evidence variables are all conditionally independent given the query variable




Next time

= Bayes nets
" Elementary inference in Bayes nets



