CS 188: Artificial Intelligence

Probability

Slides mostly from Stuart Russell and Peyrin Kao

University of California, Berkeley

Uncertainty

- The real world is rife with uncertainty!
 - E.g., if I leave for SFO 60 minutes before my flight, will I be there in time?
- Problems:
 - partial observability (road state, other drivers' plans, etc.)
 - noisy sensors (radio traffic reports, Google maps)
 - immense complexity of modelling and predicting traffic, security line, etc.
 - Iack of knowledge of world dynamics (will tire burst? will I get in crash?)
- Probabilistic assertions summarize effects of *ignorance* and *laziness*
- Combine probability theory + utility theory -> decision theory
 - Maximize expected utility : $a^* = argmax_a \sum_s P(s \mid a) U(s)$

Basic laws of probability (discrete)

- Begin with a set *Ω* of possible worlds
 - E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

- A *probability model* assigns a number *P*(*ω*) to each world *ω*
 - E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6.
- These numbers must satisfy
 - 0 ≤ *P*(*ω*)
 - $\sum_{\omega \in \Omega} P(\omega) = 1$

Basic laws contd.

- An *event* is any subset of *Ω*
 - E.g., "roll < 4" is the set {1,2,3}</p>
 - E.g., "roll is odd" is the set {1,3,5}

- The probability of an event is the *sum* of probabilities over its worlds
 - $P(A) = \sum_{\omega \in A} P(\omega)$
 - E.g., P(roll < 4) = P(1) + P(2) + P(3) = 1/2
- De Finetti (1931): anyone who bets according to probabilities that violate these laws can be forced to lose money on every set of bets

Random Variables

- A random variable (usually denoted by a capital letter) is some aspect of the world about which we may be uncertain
- Formally a *deterministic function* of *w*
- The range of a random variable is the set of possible values
 - Odd = Is the dice roll an odd number? → {true, false}
 - e.g. Odd(1)=true, Odd(6) = false
 - often write the event Odd=true as odd, Odd=false as ¬odd
 - T = Is it hot or cold? \rightarrow {hot, cold}
 - D = How long will it take to get to the airport? → [0, ∞)
 - L_{Ghost} = Where is the ghost? \rightarrow {(0,0), (0,1), ...}
- The probability distribution of a random variable X gives the probability for each value x in its range (probability of the event X=x)
 - $P(X=x) = \sum_{\{\omega: X(\omega)=x\}} P(\omega)$
 - P(x) for short (when unambiguous)
 - P(X) refers to the entire distribution (think of it as a vector or table)

Probability Distributions

- Associate a probability with each value; sums to 1
 - Temperature:

 \mathbf{D}

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

P(W)			
W P			
sun	0.6		
rain	0.1		
fog	0.3		
meteor	0.0		
32	• •		

Weather:

Joint distribution
 Marginal distributions
 P(T,W)

		Temperature	
		hot	cold
L	sun	0.45	0.15
Ithe	rain	0.02	0.08
Vea	fog	0.03	0.27
~	meteor	0.00	0.00

- Can't deduce joint from marginals
- Can deduce marginals from joint

Making possible worlds

- In many cases we
 - begin with random variables and their domains
 - construct possible worlds as assignments of values to all variables
- E.g., two dice rolls Roll₁ and Roll₂
 - How many possible worlds?
 - What are their probabilities?
- Size of distribution for *n* variables with range size *d*?
- For all but the smallest distributions, cannot write out by hand!

Probabilities of events

- Recall that the probability of an event is the sum of probabilities of its worlds:
 - $P(A) = \sum_{\omega \in A} P(\omega)$
- So, given a joint distribution over all variables, can compute any event probability
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR not foggy?

- Joint distribution
 - P(T,W)

		Temperature	
		hot	cold
L	sun	0.45	0.15
ithe	rain	0.02	0.08
Vea	fog	0.03	0.27
~	meteor	0.00	0.00

Game

- 5 volunteers
- I'll show you two options of events—pick one
- I'll randomly sample an outcome—if your event happens you get \$1
- Option 1 in red; Option 2 in black
- Round 1: Sunny or Hot
 - $P(X=x) = \sum_{\{\omega: X(\omega)=x\}} P(\omega)$
- Round 2: Cold and foggy or Rainy
- Round 3: If it's rainy (I'll keep sampling until it is) then cold or Sunny
 - That's written cold | rainy
- Round 4: Foggy | cold or Hot | not rainy
- Round 5: Hot on the first draw; sunny on the next draw or Hot and sunny on the first draw

Joint distribution

P(T,W)

		Temperature	
		hot	cold
	sun	0.45	0.15
ther	rain	0.02	0.08
Nea	fog	0.03	0.27
	meteor	0.00	0.00

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Collapse a dimension by adding

 $P(X=x) = \sum_{y} P(X=x, Y=y)$

P(x,y)

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

 $P(a \mid b) = \frac{P(a, b)}{P(b)}$

P	(7	Γ	N	Λ
		,	~ ~	' / _

		Temperature	
hot		hot	cold
<u> </u>	sun	0.45	0.15
athe	rain	0.02	0.08
Nea	fog	0.03	0.27
meteor		0.00	0.00

Conditional Distributions

Distributions for one set of variables given another set

		Temperature	
		hot cold	
L	sun	0.45	0.15
Ithe	rain	0.02	0.08
Vea	fog	0.03	0.27
	meteor	0.00	0.00

 $P(W \mid T=h) \qquad P(W \mid T=c) \qquad P(W \mid T)$

hot		
0.90		
0.04		
0.06		
0.00		

cold	
0.30	
0.16	
0.54	
0.00	

hot	cold	
0.90	0.30	
0.04	0.16	
0.06	0.54	
0.00	0.00	

Normalizing a distribution

P(W,T)

		Temperature	
	hot		cold
	sun	0.45	0.15
Ithe	rain	0.02	0.08
Nea	fog	0.03	0.27
~	meteor	0.00	0.00

P(W,T=c)

 $P(W \mid T=c) = P(W,T=c)/P(T=c)$ $= \alpha P(W,T=c)$

The Product Rule

Sometimes have conditional distributions but want the joint

The Product Rule: Example

$P(W \mid T) P(T) = P(W, T)$

 $P(W \mid T)$

P(T)			
Т	Р		
hot	0.5		
cold	0.5		

		Temperature	
		hot	cold
r	sun	0.45	0.15
Ithe	rain	0.02	0.08
Nea	fog	0.03	0.27
~	meteor	0.00	0.00

hot	cold
0.90	0.30
0.04	0.16
0.06	0.54
0.00	0.00

Game Part II

$P(W \mid T) P(T) = P(W, T)$

- 4 Volunteers
- First I'll sample hot or cold
- Then I'll sample weather from the conditional distribution
- Option 1 in red; Option 2 in black
- Round 6: Sunny and hot or Foggy and cold
- Round 7: Sunny or Foggy
- Round 8: Hot | sunny or Cold | sunny
- Round 9: Hot | not foggy or Cold | not foggy

h	ot P(V	V T) co	old
sun hot	0.90	sun cold	0.30
rain hot	0.04	rain cold	0.16
fog hot	0.06	fog cold	0.54
meteor hot	0.00	meteor cold	0.00

P(T)

hot	0.25
cold	0.75

The Chain Rule

- A joint distribution can be written as a product of conditional distributions by repeated application of the product rule:
- $P(x_1, x_2, x_3) = P(x_3 \mid x_1, x_2) P(x_1, x_2) = P(x_3 \mid x_1, x_2) P(x_2 \mid x_1) P(x_1)$
- $P(x_1, x_2, ..., x_n) = \prod_i P(x_i \mid x_1, ..., x_{i-1})$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from a probability model
 - Typically for a *query variable* given *evidence*
 - E.g., P(airport on time | no accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(airport on time | no accidents, 5 a.m.) = 0.95
 - P(airport on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes <u>beliefs to be updated</u>

Inference by Enumeration

We want:

P(**Q** | **e**)

- Probability model $P(X_1, ..., X_n)$ is given
- Partition the variables X₁, ..., X_n into sets as follows:

Q

- Evidence variables: E = e
- Query variables:
- Hidden variables: H
- Step 1: Select the entries consistent with the evidence

 $P(\boldsymbol{Q},\boldsymbol{e}) = \sum_{\boldsymbol{h}} \underbrace{P(\boldsymbol{Q},\boldsymbol{h},\boldsymbol{e})}_{X_1,\ldots,X_n}$

Step 3: Normalize

```
P(\boldsymbol{Q} \mid \boldsymbol{e}) = \alpha P(\boldsymbol{Q}, \boldsymbol{e})
```


Inference by Enumeration

		Season	Тетр	Weather	Р
$= D(C \mid aure)$	0.45	summer	hot	sun	0.35
$= P(S \mid sun)r$		summer	hot	rain	0.01
1. Enumerate options with		summer	hot	fog	0.01
sun		summer	hot	meteor	
2. Sum out irrelevant	N	summer	cold	sun	0.10
variable(s)		summer	cold	rain	0.05
		summer	cold	fog	
 3. Normalize 		summer	cold	meteor	0.00
P(S sun) =		winter	hot	sun	0.10
{summer: 0.45/(0.45+0.25)		winter	hot	rain	0.01
winter: $0.25/(0.15+0.25)$	0.25	winter	hot	fog	0.02
winter: 0.23/(0.43+0.23))	\mathbf{x}	winter	hot	meteor	0.00
	N	winter	cold	sun	0.15
		winter	cold	rain	0.20
		winter	cold	for	0.18

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ) (exponential in #hidden variables)
 - Space complexity O(dⁿ) to store the joint distribution
 - O(dⁿ) data points to estimate the entries in the joint distribution

Bayes' Rule

Bayes' Rule

- Write the product rule both ways: P(a | b) P(b) = P(a, b) = P(b | a) P(a)
- Dividing left and right expressions, we get:

 $P(a \mid b) = \frac{P(b \mid a) P(a)}{P(b)}$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Describes an "update" step from prior P(a) to posterior $P(a \mid b)$
 - Hence provides a simple, formal theory of learning
- E.g.: d is data, h is hypothesis: $P(h \mid d) = \frac{P(d \mid h) P(h)}{P(h)} = \frac{P(d \mid h) P(h)}{P(h)}$

 $\Sigma_{h'} P(d|h') P(h')$

P(d)

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

 $P(cause | effect) = \frac{P(effect | cause) P(cause)}{P(effect)}$

- Example:
 - M: meningitis, S: stiff neck

$$P(s | m) = 0.8$$

$$P(m) = 0.0001$$

$$P(s) = 0.01$$
Example givens

$$P(m \mid s) = \frac{P(s \mid m) P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.01}$$

- Note: posterior probability of meningitis still very small: 0.008 (80x bigger why?)
- Note: you should still get stiff necks checked out! Why?

Independence

- Two variables X and Y are (absolutely) *independent* if $\forall x, y \quad P(x, y) = P(x) P(y)$
 - I.e., the joint distribution *factors* into a product of two simpler distributions
- Equivalently, via the product rule P(x,y) = P(x|y)P(y),

 $P(x \mid y) = P(x)$ or $P(y \mid x) = P(y)$

- Example: two dice rolls Roll₁ and Roll₂
 - $P(Roll_1=5, Roll_2=3) = P(Roll_1=5) P(Roll_2=3) = 1/6 \times 1/6 = 1/36$
 - $P(Roll_2=3 | Roll_1=5) = P(Roll_2=3)$

Example: Independence

n fair, independent coin flips:

Independence, contd.

- Independence is incredibly powerful
 - Exponential reduction in representation size
- Independence is extremely rare!
- *Conditional* independence is ubiquitous!!

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if:
 ∀x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if $\forall x,y,z \quad P(x, y \mid z) = P(x \mid z) P(y \mid z)$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: usually red
 - 1 or 2 away: mostly orange
 - 3 or 4 away: typically yellow
 - 5+ away: often green
- Click on squares until confident of location, then "bust"

Video of Demo Ghostbusters with Probability

Ghostbusters model

- Variables and ranges:
 - G (ghost location) in {(1,1),...,(3,3)}
 - C_{x,y} (color measured at square x,y) in {red,orange,yellow,green}

- Ghostbuster physics:
 - Uniform prior distribution over ghost location: P(G)
 - Sensor model: P(C_{x,y} | G) (depends only on distance to G)
 - E.g. $P(C_{1,1} = \text{yellow} | G = (1,1)) = 0.1$

Ghostbusters model, contd.

- P(G, C_{1,1}, ..., C_{3,3}) has 9 x 4⁹ = 2,359,296 entries!!!
- Ghostbuster independence:
 - Are C_{1,1} and C_{1,2} independent?
 - E.g., does $P(C_{1,1} = yellow) = P(C_{1,1} = yellow | C_{1,2} = orange)$?
- Ghostbuster physics again:
 - P(C_{x,y} | G) depends <u>only</u> on distance to G
 - So $P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3)) = P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3), C_{1,2} = \text{orange})$
 - I.e., C_{1,1} is conditionally independent of C_{1,2} given G

Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
- $P(G, C_{1,1}, ..., C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G, C_{1,1}) P(C_{1,3} | G, C_{1,1}, C_{1,2}) ... P(C_{3,3} | G, C_{1,1}, ..., C_{3,2})$
- Now simplify using conditional independence:
- $P(G, C_{1,1}, ..., C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G) P(C_{1,3} | G) ... P(C_{3,3} | G)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from *exponential* to *quadratic* in the number of squares
- This is called a Naïve Bayes model:
 - One discrete query variable (often called the *class* or *category* variable)
 - All other variables are (potentially) evidence variables
 - Evidence variables are all conditionally independent given the query variable

Next time

- Bayes nets
- Elementary inference in Bayes nets