Announcements

- HW3 is due today, February 20, 11:59pm PT
- Project 3 is due Tuesday,
 February 27, 11:59pm PT
- HW4 out later this week; due Friday, March 1, 11:59pm PT
- Midterm: Tuesday, March 5,
 7pm PT (more info on website)

Pre-scan attendance QR code now!

(Password appears later)

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

CS 188: Artificial Intelligence

Bayes Nets

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Probability

- Basic laws: $0 \le P(\omega) \le 1$ $\sum_{\omega \in \Omega} P(\omega) = 1$
- Events: subsets of Ω : $P(A) = \sum_{\omega \in A} P(\omega)$
- Random variable X(\omega) has a value in each \omega
 - Distribution P(X) gives probability for each possible value x
 - Joint distribution P(X, Y) gives total probability for each combination x, y
- Summing out/marginalization: $P(X=x) = \sum_{y} P(X=x, Y=y)$
- Conditional probability: P(X | Y) = P(X, Y)/P(Y)
- Product rule: P(X|Y)P(Y) = P(X,Y) = P(Y|X)P(X)
 - Generalize to chain rule: $P(X_1, ..., X_n) = \prod_i P(X_i | X_1, ..., X_{i-1})$

Recap: Strict Independence

- Two variables X and Y are (absolutely) *independent* if $\forall x, y \quad P(x, y) = P(x) P(y)$
 - I.e., the joint distribution *factors* into a product of two simpler distributions
- Equivalently, via the product rule P(x,y) = P(x|y)P(y),

 $P(x \mid y) = P(x)$ or $P(y \mid x) = P(y)$

- Example: two dice rolls *Roll*₁ and *Roll*₂
 - $P(Roll_1=5, Roll_2=3) = P(Roll_1=5) P(Roll_2=3) = 1/6 \times 1/6 = 1/36$
 - $P(Roll_2=3 | Roll_1=5) = P(Roll_2=3)$

Recap: Strict Independence

n fair, independent coin flips:

Example: Strict Independence

P(Rain, Traffic, Umbrella)

Rain	Traffic	Umbrella	Р	P_indep.
F	F	F	0.504	0.314
F	F	Т	0.056	0.141
F	Т	F	0.126	0.169
F	Т	Т	0.014	0.076
Т	F	F	0.018	0.135
Т	F	Т	0.072	0.060
Т	Т	F	0.042	0.072
Т	Т	Т	0.168	0.033

P(Rain) P(Traffic) P(Umbrella) F T * F T = =

0.35

0.69

0.31

0.65

0.7

0.3

Example: Chain Rule

P(Rain, Traffic, Umbrella)

P(Rain)

F	Т
0.7	0.3

*

	Traffic		
Rain	F	Т	
F	0.8	0.2	
Т	0.3	0.7	

*

P(Traf. | Rain) *P*(Umbr. | Rain, Traf.)

			Umbrella	
Rain	Traffic	F	Т	
F	F	0.9	0.1	
F	Т	0.9	0.1	
Т	F	0.2	0.8	
т	Т	0.2	0.8	

Example: Chain Rule

P(Rain, Traffic, Umbrella)

P(Traf. | Rain)

P(Rain)

F	Т
0.7	0.3

*

	Traffic		
Rain	F	Т	
F	0.8	0.2	
Т	0.3	0.7	

*

P(Umbr. | Rain)

	Umbrella		
Rain	F	Т	
F	0.9	0.1	
Т	0.2	0.8	

Conditional Independence

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if: $\forall x,y,z \quad P(x \mid y, z) = P(x \mid z)$

or, equivalently, if and only if $\forall x,y,z \quad P(x, y \mid z) = P(x \mid z) P(y \mid z)$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: usually red
 - 1 or 2 away: usually orange
 - 3 or 4 away: usually yellow
 - 5+ away: usually green
- Click on squares until confident of location, then "bust"

Video of Demo Ghostbusters with Probability

Ghostbusters model

- Variables and ranges:
 - G (ghost location) in {(1,1),...,(3,3)}
 - C_{x,y} (color measured at square x,y) in {red,orange,yellow,green}

- Ghostbuster physics:
 - Uniform prior distribution over ghost location: P(G)
 - Sensor model: P(C_{x,v} | G) (depends only on distance to G)
 - E.g. $P(C_{1,1} = \text{yellow} | G = (1,1)) = 0.1$

Ghostbusters model, contd.

- $P(G, C_{1,1}, \dots, C_{3,3})$ has 9 x 4⁹ = 2,359,296 entries!!!
- Ghostbuster independence:
 - Are C_{1,1} and C_{1,2} independent?

• E.g., does $P(C_{1,1} = yellow) = P(C_{1,1} = yellow | C_{1,2} = orange)$?

- Ghostbuster physics again:
 - P(C_{x,y} | G) depends <u>only</u> on distance to G
 - So $P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3)) = P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3), C_{1,2} = \text{orange})$
 - I.e., C_{1,1} is conditionally independent of C_{1,2} given G

Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
- $P(G, C_{1,1}, ..., C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G, C_{1,1}) P(C_{1,3} | G, C_{1,1}, C_{1,2}) ... P(C_{3,3} | G, C_{1,1}, ..., C_{3,2})$
- Now simplify using conditional independence:
- $P(G, C_{1,1}, ..., C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G) P(C_{1,3} | G) ... P(C_{3,3} | G)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from *exponential* to *quadratic* in the number of squares

Bayes Nets: Big Picture

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions
 - A subset of the general class of graphical models
- Use local causality/conditional independence:
 - the world is composed of many variables,
 - each interacting locally with a few others
- Outline
 - Representation
 - Exact inference
 - Approximate inference

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: absence of arc encodes conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Weather

Example: Coin Flips

No interactions between variables: strict independence

Example: Traffic

- Variables:
 - T: There is traffic
 - U: I'm holding my umbrella
 - R: It rains

Example: Smoke alarm

- Variables:
 - F: There is fire
 - S: There is smoke
 - A: Alarm sounds

Example: Ghostbusters

- This is called a Naïve Bayes model:
 - One discrete query variable (often called the *class* or *category* variable)
 - All other variables are (potentially) evidence variables
 - Evidence variables are all conditionally independent given the query variable

Example Bayes' Net: Car Insurance

Example Bayes' Net: Car Won't Start

Bayes Net Syntax and Semantics

Bayes Net Syntax

- A set of nodes, one per variable X_i
- A directed, acyclic graph
- A conditional distribution for each node given its *parent variables* in the graph
 - CPT (conditional probability table); each row is a distribution for child given values of its parents

G	P(C _{1,1} G)			
	g	У	0	r
(1,1)	0.01	0.1	0.3	0.59
(1,2)	0.1	0.3	0.5	0.1
(1,3)	0.3	0.5	0.19	0.01

Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

- Variables
 - B: Burglary
 - E: Earthquake
 - A: Alarm goes off
 - J: John calls
 - M: Mary calls

Example: Alarm Network

Bayes net global semantics

Bayes nets encode joint distributions as product of conditional distributions on each variable: $P(X_1, ..., X_n) = \prod_i P(X_i \mid Parents(X_i))$

Exploits sparse structure: number of parents is usually small

Size of a Bayes Net

- How big is a joint distribution over N variables, each with d values?
 - d^N
- How big is an N-node net if nodes have at most k parents?
 O(N * d^k)

- Both give you the power to calculate $P(X_1, X_2, ..., X_N)$
- Bayes Nets: huge space savings with sparsity!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Example

P(b,¬e, a, ¬j, ¬m) = P(b) P(\neg e) P(a|b, \neg e) P(\neg j|a) P(\neg m|a) =.001x.998x.94x.1x.3=.000028false

0.05

0.06

0.71

0.999

32

Conditional independence in BNs

Compare the Bayes net global semantics

 $P(X_1,..,X_n) = \prod_i P(X_i \mid Parents(X_i))$

with the chain rule identity

 $P(X_1,..,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$

- Assume (without loss of generality) that X₁,..,X_n sorted in topological order according to the graph (i.e., parents before children), so Parents(X_i) ⊆ X₁,...,X_{i-1}
- So the Bayes net asserts conditional independences $P(X_i | X_1, ..., X_{i-1}) = P(X_i | Parents(X_i))$
 - To ensure these are valid, choose parents for node X_i that "shield" it from other predecessors

Conditional independence semantics

- **Every variable is conditionally independent of its non-descendants given its parents**
- Conditional independence semantics <=> global semantics

Example: Burglary

Example: Burglary

Example: Traffic

Causality?

When Bayes' nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Rain*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

 $P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
 - Global joint probability = product of local conditionals
- Allows for flexible tradeoff between model accuracy and memory/compute efficiency

Strict Independence

Sparse Bayes Net

Joint Distribution