Announcements

- HW3 is due today, February 20, 11:59pm PT
- Project 3 is due Tuesday, February 27, 11:59pm PT
- HW4 out later this week; due Friday, March 1, 11:59pm PT
- Midterm: Tuesday, March 5, 7pm PT (more info on website)

Pre-scan attendance QR code now!
(Password appears later)

CS 188: Artificial Intelligence

Bayes Nets

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Probability

- Basic laws: $0 \leq P(\omega) \leq 1 \quad \sum_{\omega \in \Omega} P(\omega)=1$
- Events: subsets of $\Omega: P(A)=\sum_{\omega \in A} P(\omega)$
- Random variable $X(\omega)$ has a value in each ω
- Distribution $P(X)$ gives probability for each possible value x
- Joint distribution $P(X, Y)$ gives total probability for each combination x, y
- Summing out/marginalization: $P(X=x)=\sum_{y} P(X=x, Y=y)$
- Conditional probability: $P(X \mid Y)=P(X, Y) / P(Y)$
- Product rule: $P(X \mid Y) P(Y)=P(X, Y)=P(Y \mid X) P(X)$
- Generalize to chain rule: $P\left(X_{1}, ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{1, \ldots}, X_{i-1}\right)$

Recap: Strict Independence

- Two variables X and Y are (absolutely) independent if

$$
\forall x, y \quad P(x, y)=P(x) P(y)
$$

- I.e., the joint distribution factors into a product of two simpler distributions
- Equivalently, via the product rule $P(x, y)=P(x \mid y) P(y)$,

$$
P(x \mid y)=P(x) \quad \text { or } \quad P(y \mid x)=P(y)
$$

- Example: two dice rolls Roll_{1} and Roll_{2}
- $P\left(\right.$ Roll $_{1}=5$, Rol $\left._{2}=3\right)=P\left(\right.$ Roll $\left._{1}=5\right) P\left(\right.$ Roll $\left._{2}=3\right)=1 / 6 \times 1 / 6=1 / 36$
- $P\left(\right.$ Roll $_{2}=3 \mid$ Rol $\left._{1}=5\right)=P\left(\right.$ Rol $\left._{2}=3\right)$

Recap: Strict Independence

- n fair, independent coin flips:

		$P\left(X_{2}\right)$		$P\left(X_{n}\right)$	
H	0.5	H	0.5	H	0.5
T	0.5	T	0.5	T	0.5

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

Example: Strict Independence

P (Rain, Traffic, Umbrella)

Rain	Traffic	Umbrella	P	P_indep.
F	F	F	0.504	0.314
F	F	T	0.056	0.141
F	T	F	0.126	0.169
F	T	T	0.014	0.076
T	F	F	0.018	0.135
T	F	T	0.072	0.060
T	T	F	0.042	0.072
T	T	T	0.168	0.033

P (Rain) $\quad P$ (Traffic) $\quad P$ (Umbrella)

F	T			
0.7	0.3	$*$	F	T
:---:	:---:			
0.65	0.35	$*$	F	T
:---:	:---:			
0.69	0.31			

Example: Chain Rule

P (Rain, Traffic, Umbrella)

Rain	Traffic	Umbrella	P
F	F	F	0.504
F	F	T	0.056
F	T	F	0.126
F	T	T	0.014
T	F	F	0.018
T	F	T	0.072
T	T	F	0.042
T	T	T	0.168

$$
P(\text { Traf.|Rain) }
$$

P (Rain)

F	T
0.7	0.3

*

	Traffic	
Rain	F	T
F	0.8	0.2
T	0.3	0.7

*

$P($ Umbr.|Rain, Traf.)

		Umbrella		conditional independence
Rain	Traffic	F	T	
F	F	0.9	0.1	
F	T	0.9	0.1	$=$
T	F	0.2	0.8	
T	T	0.2	0.8	

Example: Chain Rule

P (Rain, Traffic, Umbrella)

Rain	Traffic	Umbrella	P
F	F	F	0.504
F	F	T	0.056
F	T	F	0.126
F	T	T	0.014
T	F	F	0.018
T	F	T	0.072
T	T	F	0.042
T	T	T	0.168

> P(Traf.|Rain)
P (Rain)

F	T
0.7	0.3

*

	Traffic	
Rain	F	T
F	0.8	0.2
T	0.3	0.7

P (Umbr.|Rain)

	Umbrella	
Rain	F	T
F	0.9	0.1
T	0.2	0.8

conditional
independence
$=$

Conditional Independence

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if:

$$
\forall x, y, z \quad P(x \mid y, z)=P(x \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z \quad P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | +toothache, +cavity) $=\mathrm{P}(+$ catch | +cavity)
- The same independence holds if I don't have a cavity:
- $\mathrm{P}(+$ catch | +toothache, -cavity $)=\mathrm{P}(+$ catch | -cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) $=\mathrm{P}($ Catch | Cavity $)$

- Equivalent statements:
- P (Toothache | Catch , Cavity) $=\mathrm{P}($ Toothache | Cavity)
- P (Toothache, Catch | Cavity) $=\mathrm{P}$ (Toothache | Cavity) P (Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: usually red
- 1 or 2 away: usually orange
- 3 or 4 away: usually yellow
- 5+ away: usually green
- Click on squares until confident of location, then "bust"

Ghostbusters model

- Variables and ranges:
- G (ghost location) in $\{(1,1), \ldots,(3,3)\}$
- $C_{x, y}$ (color measured at square x, y) in \{red,orange,yellow,green\}

- Ghostbuster physics:
- Uniform prior distribution over ghost location: $P(G)$
- Sensor model: $P\left(C_{x, y} \mid G\right)$ (depends only on distance to G)
- E.g. $P\left(C_{1,1}=\right.$ yellow $\left.\mid G=(1,1)\right)=0.1$

Ghostbusters model, contd.

- $\mathrm{P}\left(\mathrm{G}, C_{1,1}, \ldots C_{3,3}\right)$ has $9 \times 4^{9}=2,359,296$ entries!!!
- Ghostbuster independence:
- Are $C_{1,1}$ and $C_{1,2}$ independent?
- E.g., does $\mathrm{P}\left(C_{1,1}=\right.$ yellow $)=\mathrm{P}\left(C_{1,1}=\right.$ yellow $\mid C_{1,2}=$ orange $)$?

- Ghostbuster physics again:
- $P\left(C_{x, y} \mid G\right)$ depends only on distance to G
- So $P\left(C_{1,1}=\right.$ yellow $\left.\mid \underline{G=(2,3)}\right)=P\left(C_{1,1}=\right.$ yellow $\mid \underline{G=(2,3)}, C_{1,2}=$ orange)
- I.e., $C_{1,1}$ is conditionally independent of $C_{1,2}$ given G

Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
- $P\left(G, C_{1,1}, \ldots C_{3,3}\right)=P(G) P\left(C_{1,1} \mid G\right) P\left(C_{1,2} \mid G, C_{1,1}\right) P\left(C_{1,3} \mid G, C_{1,1}, C_{1,2}\right) \ldots P\left(C_{3,3} \mid G, C_{1,1}, \ldots, C_{3,2}\right)$
- Now simplify using conditional independence:
- $P\left(G, C_{1,1}, \ldots C_{3,3}\right)=P(G) P\left(C_{1,1} \mid G\right) P\left(C_{1,2} \mid G\right) P\left(C_{1,3} \mid G\right) \ldots P\left(C_{3,3} \mid G\right)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from exponential to quadratic in the number of squares

Bayes Nets: Big Picture

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions
- A subset of the general class of graphical models
- Use local causality/conditional independence:

- the world is composed of many variables,
- each interacting locally with a few others
- Outline
- Representation
- Exact inference
- Approximate inference

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Indicate "direct influence" between variables
- Formally: absence of arc encodes conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

- n independent coin flips

. . .

- No interactions between variables: strict independence

Example: Traffic

- Variables:
- T : There is traffic
- U: I'm holding my umbrella
- R : It rains

Example: Smoke alarm

- Variables:
- F : There is fire
- S : There is smoke
- A: Alarm sounds

Example: Ghostbusters

- Variables:
- G: The ghost's location
- $C_{1,1}, \ldots C_{3,3}$:

The observation at each location

- Want to estimate:
$P\left(G \mid C_{1,1}, \ldots C_{3,3}\right)$

- This is called a Naïve Bayes model:
- One discrete query variable (often called the class or category variable)
- All other variables are (potentially) evidence variables
- Evidence variables are all conditionally independent given the query variable

Example Bayes' Net: Car Insurance

Example Bayes' Net: Car Won’t Start

Bayes Net Syntax and Semantics

Bayes Net Syntax

- A set of nodes, one per variable X_{i}
- A directed, acyclic graph
- A conditional distribution for each node given its parent variables in the graph

Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

- Variables
- B: Burglary
- E: Earthquake
- A: Alarm goes off
- J: John calls
- M: Mary calls

Example: Alarm Network

Bayes net global semantics

- Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

- Exploits sparse structure: number of parents is usually small

Size of a Bayes Net

- How big is a joint distribution over N variables, each with d values?

$$
d^{N}
$$

- How big is an N-node net if nodes have at most k parents?

$$
O\left(N * d^{k}\right)
$$

- Both give you the power to calculate $P\left(X_{1}, X_{2}, \ldots, X_{N}\right)$
- Bayes Nets: huge space savings with sparsity!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Example

Conditional independence in BNs

- Compare the Bayes net global semantics

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

with the chain rule identity

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- Assume (without loss of generality) that $X_{1}, . ., X_{n}$ sorted in topological order according to the graph (i.e., parents before children), so Parents $\left(X_{i}\right) \subseteq X_{1}, \ldots, X_{i-1}$
- So the Bayes net asserts conditional independences $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- To ensure these are valid, choose parents for node X_{i} that "shield" it from other predecessors

Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics

Example: Burglary

Example: Burglary

- Alarm
- Burglary
- Earthquake

A	$P(B \mid A)$	
	true	false
true	$?$	
false		

Example: Traffic

	$P(R)$			
	+r		1/4	
	-r		3/4	
	$P(T \mid R)$			
	+r	+		3/4
		-		1/4
	-r	+		1/2
		-		1/2

$P(T, R)$	
$+r$ $+t$ $3 / 16$ $+r$ $-t$ $1 / 16$ $-r$ $+t$ $6 / 16$ $-r$ $-t$ $6 / 16$	

$P(T)$
+t
-t
$9 / 16$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
 (especially if variables are missing)
- E.g. consider the variables Traffic and Rain
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
- Global joint probability = product of local conditionals
- Allows for flexible tradeoff between model accuracy and memory/compute efficiency
(A) B C
(D) E
Strict Independence

Sparse Bayes Net

