Announcements

= HW3 is due today, February
20, 11:59pm PT

[=] 37 [m]

[=]

Pre-scan attendance

= Midterm: Tuesday, March 5, QR code now!
7pm PT (more info on website) (Password appears later)

" Project 3 is due Tuesday,
February 27, 11:59pm PT

= HW4 out later this week; due
Friday, March 1, 11:59pm PT

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



CS 188: Artificial Intelligence

Bayes Nets

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Recap: Probability

Basiclaws: 0<P(w) <1 2, _pPlw)=1
Events: subsets of (2 P(A) =2, _ » P(®)

Random variable X(w) has a value in each w

= Distribution P(X) gives probability for each possible value x

= Joint distribution P(X,Y) gives total probability for each combination x,y
Summing out/marginalization: P(X=x) = 2., P(X=x,Y=y)
Conditional probability: P(X]|Y) = P(X,Y)/P(Y)

Product rule: P(X|Y)P(Y) = P(X,Y) = P(Y|X)P(X)

» Generalize to chain rule: P(Xy,.., X)) = 11, P(X; | X,..,X:4)

3



Recap: Strict Independence

= Two variables X and Y are (absolutely) independent if
vVx,y  Plx,y)=P(x) P(y)

= |.e., the joint distribution factors into a product of two simpler distributions

= Equivalently, via the product rule P(x,y) = P(x|y)P(y),
Px [ y)=P(x) or Ply|x)=Ply)

= Example: two dice rolls Roll; and Roll,
m P(Ro//1:5’ RO//2=3) = P(RO//1=5) P(ROII2=3) = 1/6)(1/6 = 1/36
= P(Roll,=3 | Roll;=5) = P(Roll,=3)




Recap: Strict Independence

" n fair, independent coin flips:

P(X))  PX) P(X,)
H |05 H |05 o H |05
T |05 T |05 T |05
N~ A
——

P(X.,X,,...,.X,)

\
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Example: Strict Independence

P(Rain, Traffic, Umbrella)

Rain Traffic Umbrella P P_indep.
F F F 0.504 0.314
F F T 0.056 0.141
F T F 0.126 0.169
F T T 0.014 0.076
T F F 0.018 0.135
T F T 0.072 0.060
T T F 0.042 0.072
T T T 0.168 0.033

X

P(Rain) P(Traffic) P(Umbrella)

- T - T - T

k e S =
0.7 0.3 0.65 | 0.35 0.69 | 0.31




Example: Chain Rule

/D/W/“MM P(Rain, Traffic, Umbrella)

Rain Traffic Umbrella P
F F F 0.504
F F T 0.056
F T F 0.126
F T T 0.014 /
T F F 0.018
T F T 0.072
T T F 0.042
T T T 0.168

P(Traf.|Rain) P(Umbr.|Rain, Traf.)
conditional
P( Rain) Traffic Umbrella Cindepe:\dence)

Rain Traffic F T
T Rain | F T F F 0.9 0.1 /
* F | 08 | 0.2 * F T 00 | o1 =
0.3 T F 0.2 0.8
T 0.3 0.7 T T 0.2 0.8




Example: Chain Rule

/?M;‘Y\MM P(Rain, Traffic, Umbrella)

Rain Traffic Umbrella P
F F F 0.504
F F T 0.056
F T F 0.126
F T T 0.014
T F F 0.018 '/
T F T 0.072
T T F 0.042
T T T 0.168
P(Traf.|Rain) P(Umbr.|Rain)
. conditional
P(Rain) Traffic Umbrella independence
T Rain F T Rain F T /
* k =
0.3 F 0.8 0.2 F 0.9 0.1
T 0.3 0.7 T 0.2 0.8




Conditional Independence

= Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= X is conditionally independent of Y given Z if and only if:
vx,y,z  Plx|y z)=Plx|2)

or, equivalently, if and only if
Vxy,z Pl y|z)=Plx|2z)Ply| 2



Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
=  P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
=  P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

= \What about this domain:

" Fire
= Smoke
= Alarm




Ghostbusters

= Aghostisinthe grid somewhere

= Sensor readings tell how close a
square is to the ghost
= On the ghost: usually red
= 1 or 2 away: usually orange
= 3 or 4 away: usually yellow
= 5+ away: usually green

= Click on squares until confident
of location, then “bust”



Video of Demo Ghostbusters with Probability




Ghostbusters model

= Variables and ranges:
= G (ghost location) in {(1,1),...,(3,3)}
" C, , (color measured at square x,y) in

{red,orange,yellow,green}

= Ghostbuster physics:
» Uniform prior distribution over ghost location: P(G)

= Sensor model: P(C, , | G) (depends only on distance to G)
" E.g. P(C;,=vyellow | G=(1,1))=0.1



Ghostbusters model, contd.

= Are C, , and C, , independent? ‘...
. : 0.11 § 0.11 7§ 0.11
= P(C,, | G) depends only on distance to G

" P(G, C; 4, ... C33) has 9 x 4”7 = 2,359,296 entries!!! H
" E.g., does P(C, ;, = yellow) = P(C, , = yellow | C; ,= orange) ?
" So P(C,,=vellow | G=(2,3))=P(C, , =yellow | G=(2,3), C, ,= orange)

= Ghostbuster independence:
» Ghostbuster physics again:
" |.e., C,  is conditionally independent of C, , given G




Ghostbusters model, contd.

Apply the chain rule to decompose the joint probability model:

P(Gr Cl,lr C3,3) = P(G) P(Cl,l | G) P(C1,z | Gr Cl,l) P(C1,3 | G; C1,1/ C1,2) P(C3,3 | G/ Cl,lr o0 C3,2)
Now simplify using conditional independence:

P(G, Cy1, - C33) = P(G) P(Cyy | G) P(Cyy | G)P(Cys | G) ... P(Css | G)

l.e., conditional independence properties of ghostbuster physics simplify the probability
model from exponential to quadratic in the number of squares



Bayes Nets: Big Picture




Bayes Nets: Big Picture

= Bayes nets: a technique for describing
complex joint distributions (models) using
simple, conditional distributions

= A subset of the general class of graphical models
= Use local causality/conditional independence:

= the world is composed of many variables,
= each interacting locally with a few others

= Qutline
= Representation

= Exact inference
= Approximate inference




Graphical Model Notation

—~ |
PR

e

(unobserved)

= Nodes: variables (with domains) &4 8
= Can be assigned (observed) or unassigned 5 X

" Arcs: interactions
®» |ndicate “direct influence” between variables

= Formally: absence of arc encodes conditional
independence (more later)

" For now: imagine that arrows mean @
direct causation (in general, they don’t!)
Toothache @




Example: Coin Flips

" nindependent coin flips

" No interactions between variables: strict independence



Example: Traffic

= Variables:
m T:There is traffic

= U:I'm holding my umbrella
= R:ltrains e




Example: Smoke alarm

: —— N
= Variables: SO ‘B\\\
AR \
" F:Thereis fire F L‘Ef_é%,
= S:Thereis smoke Ié{__{_f;;j_f;

= A: Alarm sounds




Example: Ghostbusters

= \ariables:

n
" (3: The ghost’s location
. Cl’l ’ N C3,3 :
The observation at each location
m

= Want to estimate:
P( G | Cl,lr C3,3 )

= This is called a Naive Bayes model:
= One discrete query variable (often called the class or category variable)
= All other variables are (potentially) evidence variables
= Evidence variables are all conditionally independent given the query variable



Example Bayes’ Net: Car Insurance

Age >(_SocioEcon
GoodStudent

RiskAversion

XS .
DrivingSKkill w
DrivingRecord

DrivingBehavior /

MedicalCost LiabilityCost PropertyCost

OwnCarDamage



Example Bayes’ Net: Car Won’t Start

alternator fanbelt
broken broke

fuel line starter
blocked hroke



Bayes Net Syntax and Semantics




Bayes Net Syntax

= Aset of nodes, one per variable X;

= Adirected, acyclic graph

= A conditional distribution for each node
given its parent variables in the graph

= CPT (conditional probability table); each row is a G P(C141G)
distribution for child given values of its parents - - T To T
(1,1) 001 |01 |03 |059
1,2) 0.1 03 |05 |01
(1,3) 0.3 0.5 | 0.19 | 0.01

Bayes net = Topology (graph) + Local Conditional Probabilities



= Variables
= B: Burglary
= E: Earthquake
= A: Alarm goes off
= J:John calls
= M: Mary calls

Example: Alarm Network

N—or
®
—-—
—
=

758




P(B)
true false
0.001 | 0.999
A P(J|A)
true false
true 0.9 0.1
false 0.05 0.95

Example: Alarm Network

1
Burglary

1

P(E)
true | false
0.002 | 0.998
B E P(A|B,E)

true | false

true | true | 0.95 0.05
true | false | 0.94 | 0.06
false | true | 0.29 | 0.71
false | false | 0.001 | 0.999
A P(M]|A)

true false
true 0.7 0.3
false 0.01 0.99

A »
wi [
< 4

@u
. =
= =
/,)/ v
’ /

Number of free parameters
in each CPT:

Parent range sizes d,...,d,

Child range size d
Each table row must sum to 1

(d-1) I1; d;



Bayes net global semantics

= Bayes nets encode joint distributions as product of
conditional distributions on each variable:

P(Xy,.,X,) = 11; P(X; | Parents(X))

= Exploits sparse structure: number of parents is
usually small



Size of a Bayes Net

= How bigis a joint distribution over N = Both give you the power to calculate
variables, each with d values? P(X, X5, ..., Xp)
d" = Bayes Nets: huge space savings with sparsity!
" How bigis an N-node net if nodes = Also easier to elicit local CPTs

have at most k parents?

O(N * d¥)

= Also faster to answer queries (coming)




Example

P(B) P(E) P(b;_'e; d, _'j) _'m) =
true | false true | false :
I Burglary Earthquake e | P(b) P(—e) P(a|b,—e)P(—j|a) P(—m]a)
8 | E P(A|B.E) =.001x.998x.94x.1x.3=.0000238
true false
true | true 0.95 0.05
truet false | 0.94 | 0.06
false | true | 0.29 0.71
false | false | 0.001 | 0.999
A P(J|A) A P(M|A)

true | false true | false

true 0.9 0.1 true 0.7 0.3

false 0.05 0.95 false 0.01 0.99 32




Conditional independence in BNs

Compare the Bayes net global semantics

P(Xy,...X,) = 11; P(X; | Parents(X;))

with the chain rule identity
P(Xl,..,Xn) = H,- P(X: | Xy,..,Xi 1)

Assume (without loss of generality) that X,,.., X, sorted in topological order according to
the graph (i.e., parents before children), so Parents(X;) < X4,...,X: 1

So the Bayes net asserts conditional independences P(X; | X,,...,X.1) = P(X; | Parents(X))
= To ensure these are valid, choose parents for node X; that “shield” it from other predecessors



Conditional independence semantics

= Every variable is conditionally independent of its non-descendants given its parents

" Conditional independence semantics <=> global semantics

34



Example: Burglary

P(B) -,
P(E) L —
- true | false — T Vf:;"@
B u rg I a ry 0.001 | 0.999 :002 ; 9|98 LN
= Earthquake Burglary

= Alarm

P(A|B,E)

false

true | true 0.95 0.05

true | false | 0.94 0.06

false | true | 0.29 0.71

false | false | 0.001 | 0.999

35



Example: Burglary

P(A)

m AI arm true | false

" Burglary 5

= Earthquake

A B P(E|A,B)

A P(B|A) true false
Burglary Earthquake
true false
2 true | true | D

true - -
? true | false
false false | true
false | false

36



Example: Traffic

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

+r +t 3/4
-t 1/4
-r +t 1/2

1/2

P(R|T)
+t +r 1/3
-r 2/3
-t +r 1/7
-r 6/7




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

= E.g. consider the variables Traffic and Rain
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(zi|xy,...2;-1) = P(=z;|parents(X;))



Summary

= |ndependence and conditional independence are
important forms of probabilistic knowledge

= Bayes net encode joint distributions efficiently by
taking advantage of conditional independence

= Global joint probability = product of local conditionals

= Allows for flexible tradeoff between model accuracy
and memory/compute efficiency

() ) (& o=

® @ © %
G /\® ] 40
®6® ) (© o) & ee

Strict Independence Naive Bayes Sparse Bayes Net Joint Distribution




