
Announcements

§ HW3 is due today, February 
20, 11:59pm PT

§ Project 3 is due Tuesday, 
February 27, 11:59pm PT

§ HW4 out later this week; due 
Friday, March 1, 11:59pm PT

§ Midterm: Tuesday, March 5, 
7pm PT (more info on website)

Pre-scan attendance 
QR code now!

(Password appears later)

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]
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Recap: Probability

§ Basic laws: 0 £ P(w) £ 1      åw ÎW P(w) = 1
§ Events: subsets of W: P(A) = åw Î A P(w)
§ Random variable X(w) has a value in each w

§ Distribution P(X) gives probability for each possible value x
§ Joint distribution P(X,Y) gives total probability for each combination x,y

§ Summing out/marginalization: P(X=x) = åy P(X=x,Y=y)
§ Conditional probability: P(X|Y) = P(X,Y)/P(Y)
§ Product rule: P(X|Y)P(Y)  =  P(X,Y)  =  P(Y|X)P(X)

§ Generalize to chain rule: P(X1,..,Xn)  =  Õi P(Xi | X1,..,Xi-1)
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§ Two variables X and Y are (absolutely) independent if
"x,y P(x, y) = P(x) P(y)

§ I.e., the joint distribution factors into a product of two simpler distributions

§ Equivalently, via the product rule P(x,y) = P(x|y)P(y),

P(x | y) = P(x)   or    P(y | x) = P(y)

§ Example: two dice rolls Roll1 and Roll2
§ P(Roll1=5, Roll2=3)     =   P(Roll1=5) P(Roll2=3)  =  1/6 x 1/6  =  1/36
§ P(Roll2=3 | Roll1=5)   =   P(Roll2=3)

Recap: Strict Independence



Recap: Strict Independence

§ n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

2n 
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Example: Strict Independence
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Example: Chain Rule

P(Umbr.|Rain, Traf.)
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P(Rain, Traffic, Umbrella) 

P(Rain)

Example: Chain Rule
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Conditional Independence

§ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

§ X is conditionally independent of Y given Z if and only if: 
"x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if
"x,y,z P(x, y | z) = P(x | z) P(y | z)



Conditional Independence

§ P(Toothache, Cavity, Catch)

§ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily



Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Ghostbusters

§ A ghost is in the grid somewhere
§ Sensor readings tell how close a 

square is to the ghost
§ On the ghost: usually red
§ 1 or 2 away: usually orange
§ 3 or 4 away: usually yellow
§ 5+ away: usually green

§ Click on squares until confident 
of location, then “bust”



Video of Demo Ghostbusters with Probability



Ghostbusters model

§ Variables and ranges: 
§ G (ghost location) in {(1,1),…,(3,3)}
§ Cx,y (color measured at square x,y) in

{red,orange,yellow,green}

§ Ghostbuster physics:
§ Uniform prior distribution over ghost location: P(G)
§ Sensor model: P(Cx,y | G) (depends only on distance to G)

§ E.g. P(C1,1 = yellow | G = (1,1) ) = 0.1

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11



Ghostbusters model, contd.

§ P(G, C1,1 , … C3,3) has 9 x 49 = 2,359,296 entries!!!
§ Ghostbuster independence:

§ Are C1,1 and C1,2 independent? 
§ E.g., does P(C1,1 = yellow) = P(C1,1 = yellow | C1,2 = orange) ?

§ Ghostbuster physics again:
§ P(Cx,y | G) depends only on distance to G

§ So P(C1,1 = yellow | G = (2,3) ) = P(C1,1 = yellow | G = (2,3), C1,2 = orange)
§ I.e., C1,1 is conditionally independent of C1,2 given G

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11



Ghostbusters model, contd.

§ Apply the chain rule to decompose the joint probability model:
§ P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G, C1,1) P(C1,3 | G, C1,1, C1,2) … P(C3,3 | G, C1,1, …, C3,2)
§ Now simplify using conditional independence:
§ P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G) P(C1,3 | G) … P(C3,3 | G)
§ I.e., conditional independence properties of ghostbuster physics simplify the probability 

model from exponential to quadratic in the number of squares



Bayes Nets: Big Picture



Bayes Nets: Big Picture

§ Bayes nets: a technique for describing              
complex joint distributions (models) using         
simple, conditional distributions
§ A subset of the general class of graphical models

§ Use local causality/conditional independence: 
§ the world is composed of many variables, 
§ each interacting locally with a few others

§ Outline
§ Representation
§ Exact inference
§ Approximate inference



Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Indicate “direct influence” between variables
§ Formally: absence of arc encodes conditional 

independence (more later)

§ For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

§ n independent coin flips

§ No interactions between variables: strict independence

X1 X2 Xn



Example: Traffic

§ Variables:
§ T: There is traffic
§ U: I’m holding my umbrella
§ R: It rains

U

R

T



Example: Smoke alarm

§ Variables:
§ F: There is fire
§ S: There is smoke
§ A: Alarm sounds

F

S

A



§ Variables:
§ G: The ghost’s location

§ C1,1 , … C3,3 :
The observation at each location

§ Want to estimate:
P( G | C1,1 , … C3,3 )

§ This is called a Naïve Bayes model:
§ One discrete query variable (often called the class or category variable)
§ All other variables are (potentially) evidence variables
§ Evidence variables are all conditionally independent given the query variable

Example: Ghostbusters

G

C1,1 C1,2 C3,3

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11



Example Bayes’ Net: Car Insurance
SocioEconAge

GoodStudent ExtraCar

VehicleYear
YearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord



Example Bayes’ Net: Car Won’t Start



Bayes Net Syntax and Semantics



Bayes Net Syntax
§ A set of nodes, one per variable Xi

§ A directed, acyclic graph

§ A conditional distribution for each node 
given its parent variables in the graph
§ CPT (conditional probability table); each row is a 

distribution for child given values of its parents

Bayes net = Topology (graph) + Local Conditional Probabilities

G P(C1,1 | G)

g y o r

(1,1) 0.01 0.1 0.3 0.59

(1,2) 0.1 0.3 0.5 0.1

(1,3) 0.3 0.5 0.19 0.01

…

P(G)
(1,1) (1,2) (1,3) …

0.11 0.11 0.11 …
G

C1,1 C1,2 C3,3



Example: Alarm Network

§ Variables
§ B: Burglary
§ E: Earthquake
§ A: Alarm goes off
§ J: John calls
§ M: Mary calls



Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

Number of free parameters 
in each CPT:

Parent range sizes d1,…,dk

Child range size d 
Each table row must sum to 1

(d-1) Õi di

1 1

4

2 2



Bayes net global semantics

§ Bayes nets encode joint distributions as product of 
conditional distributions on each variable:

P(X1,..,Xn)  =  Õi P(Xi | Parents(Xi))

§ Exploits sparse structure: number of parents is 
usually small



§ Both give you the power to calculate
P(X1, X2, …, XN)

§ Bayes Nets: huge space savings with sparsity!

§ Also easier to elicit local CPTs

§ Also faster to answer queries (coming) 

Size of a Bayes Net

§ How big is a joint distribution over N
variables, each with d values?

dN

§ How big is an N-node net if nodes 
have at most k parents?

O(N * dk)



P(B)

true false

0.001 0.999

Example
P(b,¬e, a, ¬j, ¬m) =
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B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

P(b) P(¬e) P(a|b,¬e) P(¬j|a) P(¬m|a) 

=.001x.998x.94x.1x.3=.000028 

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Conditional independence in BNs

§ Compare the Bayes net global semantics
P(X1,..,Xn)  =  Õi P(Xi | Parents(Xi))

with the chain rule identity
P(X1,..,Xn)  =  Õi P(Xi | X1,…,Xi-1)

§ Assume (without loss of generality) that X1,..,Xn sorted in topological order according to 
the graph (i.e., parents before children), so Parents(Xi) Í X1,…,Xi-1

§ So the Bayes net asserts conditional independences P(Xi | X1,…,Xi-1) = P(Xi | Parents(Xi))
§ To ensure these are valid, choose parents for node Xi that “shield” it from other predecessors



Conditional independence semantics

§ Every variable is conditionally independent of its non-descendants given its parents
§ Conditional independence semantics <=> global semantics

34

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j



Example: Burglary

§ Burglary
§ Earthquake
§ Alarm

35

Burglary Earthquake

Alarm

?

??

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

P(E)

true false

0.002 0.998



Example: Burglary

§ Alarm
§ Burglary
§ Earthquake

36

Burglary Earthquake

Alarm

?

?

?

P(A)

true false

A B P(E|A,B)

true false

true true

true false

false true

false false

A P(B|A)

true false

true

false

? ?



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7



Causality?

§ When Bayes’ nets reflect the true causal patterns:
§ Often simpler (nodes have fewer parents)
§ Often easier to think about
§ Often easier to elicit from experts

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Rain
§ End up with arrows that reflect correlation, not causation

§ What do the arrows really mean?
§ Topology may happen to encode causal structure
§ Topology really encodes conditional independence



Summary

§ Independence and conditional independence are 
important forms of probabilistic knowledge

§ Bayes net encode joint distributions efficiently by 
taking advantage of conditional independence
§ Global joint probability = product of local conditionals

§ Allows for flexible tradeoff between model accuracy 
and memory/compute efficiency

A B C
A

B E

D E

C

A B

D E

C

A B

Strict Independence Naïve Bayes

C

Sparse Bayes Net Joint Distribution

D E
D


