Quick Warm-Up

= Suppose we have a biased coin that comes up heads with some
unknown probability p; how can we use it to produce random
bits with probabilities of exactly 0.5 for 0 and 17?



Quick Warm-Up

= Suppose we have a biased coin that comes up heads with some

unknown probability p; how can we use it to produce random
bits with probabilities of exactly 0.5 for 0 and 17?

= Answer (von Neumann):

" Flip coin twice, repeat until the outcomes are different
»" HT =0, TH = 1, each has probability p(1-p)
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Sampling

= Why sample?

= Often very fast to get a decent
approximate answer

= Basicidea

= Draw N samples from a sampling distribution S _ _
= The algorithms are very simple and

= Compute an approximate posterior probability general (easy to apply to fancy models)
= They require very little memory (O(n))

= They can be applied to large models,
whereas exact algorithms blow up

= Show this converges to the true probability P




Example

= Suppose you have two agent programs A and B for Monopoly

= What is the probability that A wins?
= Method 1:

= Let s be a sequence of dice rolls and Chance and Community Chest cards
= Given s, the outcome V(s) is determined (1 for a win, O for a loss)

= Probability that A wins is 2.5 P(S) V(s)

" Problem: infinitely many sequences s !

= Method 2:

= Sample N sequences from P(s), play N games (maybe 100)
= Probability that A wins is roughly 1/N > V(s,) i.e., fraction of wins in the sample



Sampling basics: discrete (categorical) distribution

" To simulate a biased d-sided coin P(x):

= Step 1: Get sample u from uniform
distribution over [0, 1)
= E.g.random() in python

= Step 2: Convert this sample v into an
outcome for the given distribution by
associating each outcome x; with a P(x;)-
sized sub-interval of [0,1)
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= Example
C P(C)
red 0.6
green 0.1
blue 0.3

0.0<u<0.6,> C=red
0.6 <u<0.7, > C=green
0.7 <u<1.0, > C=blue

= |f random() returns u = 0.83,
then the sample is C = blue

= E.g, after sampling 8 times:

#
0.6 0.1 0.3 * i 6



Sampling in Bayes nets

" Prior sampling
= Rejection sampling
= |Likelihood weighting

" Gibbs sampling



Prior sampling




Prior sampling

P(C)

C

0.5

—C

0.5

P(S | C)
c L.s |01
—s | 0.9
—c|l.s 105
—s | 0.5
P(W | S,R)
. r W 0.99
—w | 0.01
—r W 0.90
—w | 0.10
. r W 0.90
—w | 0.10
—r W 0.01
—w | 0.99

SPS(CI_ISI r, W) =

P(R | C)

r | 0.8

—r | 0.2

r (0.2

—r [ 0.8

Samples:

C,—S, LW

—C,

S, L W




Prior sampling

" Fori=1, 2, ..., n (in topological order)
= Sample X; from P(X: | parents(X)))

" Return (x4, X5, ..., X,,)




Prior Sampling

This process generates samples with probability:
Sps(X1,..xp) = T1; P(X; | parents(X))) = P(X4,...,X,)
...i.e. the BN’ s joint probability

Let the number of samples of an event be Ny(x,...,x,)
Estimate from N samples is Q(xq,...,X,,) = Npg(X4,...,%,)/N
Then limy_,., Qu(X1,...,X,) = limy_o Nps(Xq,...,%,)/N

= Sps(Xq,-1Xp)

= P(Xq,...,X,)

l.e., the sampling procedure is consistent



Example

We’'ll get a bunch of samples from the BN:
c,—sS, I, W
c, S, I, W

—C, S, [I,—W

c,—S, I, W
—C, =S, =, W
If we want to know P(W)
= We have counts <w:4, —w:1>

= Normalize to get P(W) = <w:0.8, —w:0.2>
= This will get closer to the true distribution with more samples



Rejection sampling




Rejection sampling

= Asimple application of prior sampling for
estimating conditional probabilities
= |let'ssaywewantP(C| r, w)=aP(C, r, w)
= For these counts, samples with —r or —w are not
relevant

= So count the C outcomes for samples with r, w
and reject all other samples
= This is called rejection sampling f e .

" |tis also consistent for conditional probabilities
(i.e., correct in the limit)




Rejection sampling

" Input: evidence eq,..,e;
= Fori=]1, 2,..,n
= Sample X;from P(X; | parents(X;))

= |f x; not consistent with evidence
= Reject: Return, and no sample is generated in this cycle

= Return (X, X5, ..., X;,)




Car Insurance: P(PropertyCost | e)
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Likelihood weighting




Likelihood weighting

= Problem with rejection sampling: = |dea: fix evidence variables, sample the rest
= |f evidence is unlikely, rejects lots of samples = Problem: sample distribution not consistent!
= Evidence not exploited as you sample = Solution: weight each sample by probability of
= Consider P(Shape| Color=blue) evidence variables given parents
pyramid—green pyramid, blue
pyramid—red pyramid, blue

sphere, blue
cube, blue
sphere, blue

sphere, blue




Likelihood Weighting

P(C)
C 0.5
—C 0.5

P(S | C)
c L.s |01
—s | 0.9
—c | s |05
—s | 0.5
P(W
S r
—W 0.01
. | w [090
—W 0.10
] w | 0.90
—S
—W 0.10
.+ L w |o001
—w | 0.99

P(R | C)

0.8

0.2

0.2

0.8

Samples:

c,s,r,w

w=10 x0.1

x 0.99



Likelihood weighting

" |nput: evidence eq,..,€;
= w=1.0
= fori=1, 2, ...,n
= if X;is an evidence variable
= x;=observed value, for X;
= Setw=w * P(x; | parents(X)))

= else
= Sample x; from P(X; | parents(X;))

" return (xq, Xy, ..., X,), W




Likelihood weighting is consistent

Sampling distribution if Z sampled and e fixed evidence

Sws(z,e) = 11; P(z; | parents(Z)))

Now, samples have weights

w(z,e) = |1, P(e, | parents(E,))

Together, weighted sampling distribution is consistent
Sws(z,e) - w(z,e) = 11; P(z; | parents(Z)) 11, P(e, | parents(E,))
= P(z,e)

Likelihood weighting is an example of importance sampling
=  Would like to estimate some quantity based on samples from P
= Pis hard to sample from, so use Q instead
=  Weight each sample x by P(x)/Q(x)



Car Insurance: P(PropertyCost | e)
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Likelihood weighting

= Likelihood weighting is good = Likelihood weighting still has weaknesses
= All samples are used = The values of upstream variables are unaffected by
» The values of downstream variables are downstream evidence
influenced by upstream evidence = E.g., suppose evidence is a video of a traffic accident
= With evidence in k leaf nodes, weights will be O(2'k)
‘ = With high probability, one lucky sample will have much

larger weight than the others, dominating the result

OO O 0 C
(0 Q C OO - Wt?dwoultii like each variable to “see” all the
evidence!
OQOOLO O

0 QO O
@O 0O



Quiz

" Suppose | perform a random walk on a graph, following the arcs
out of a node uniformly at random. In the infinite limit, what
fraction of time do | spend at each node?

= Consider these two examples:




Markov Chain Monte Carlo

" MCMC (Markov chain Monte Carlo) is a family of randomized
algorithms for approximating some quantity of interest over a
very large state space

* Markov chain = a sequence of randomly chosen states (“random walk”),
where each state is chosen conditioned on the previous state

" Monte Carlo = a very expensive city in Monaco with a famous casino
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Markov Chain Monte Carlo

" MCMC (Markov chain Monte Carlo) is a family of randomized
algorithms for approximating some quantity of interest over a

very large state space

* Markov chain = a sequence of randomly chosen states (“random walk”),
where each state is chosen conditioned on the previous state

" Monte Carlo = a very expensive city in Monaco with a famous casino
= Monte Carlo = an algorithm (usually based on sampling) that has some
probability of producing an incorrect answer

= MCMC = wander around for a bit, average what you see



Gibbs sampling

" A particular kind of MCMC

= States are complete assignments to all variables

" (Cf local search: closely related to simulated annealing!)

* Evidence variables remain fixed, other variables change
" To generate the next state, pick a variable and sample a value for it
conditioned on all the other variables: X"~ P(X; | x,..,X;.1,Xi11,-.,%,)
= Will tend to move towards states of higher probability, but can go down too

" |n a Bayes net, P(X; | xy,..,X;.1,Xi11,..,X,) = P(X;| markov_blanket(X)))

- Theorem Gibbs sampllng is consistent™

Provided all Gibbs distributio e bounded away from 0 and 1 and variable selec



Advantages of MCMC

Samples soon begin to
reflect all the evidence
in the network

Eventually they are
being drawn from the
true posterior!
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Car Insurance: P(PropertyCost | e)
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Gibbs sampling algorithm

= Repeat many times

= Sample a non-evidence variable X;from
P(X; | xy,..,X;.1,Xi,1,--,X,) = P(X;| markov_blanket(X;))

= a P(X;| parents (X)) I1; P(y; | parents(Y)))




Gibbs Sampling Example: P( S | r)

= Step 2: Initialize other variables
= Randomly

= Step 1: Fix evidence

= R =true

= Step 3: Repeat
= Choose a non-evidence variable X
= Resample X from P(X | markov_blanket(X))

@‘f:@ @‘f:@ @‘f:@ @ﬁfﬁ@—»—»gﬁ%@ ......

Sample S~ P(S|c, r, =w) Sample C~ P(C | s, r) Sample W~ P(W | s, r)



Markov chain given s, w

0.6296 0.0026 0.1164
——
_
C r C —r
—— /
/ \ 0.4074 / \

0.2222Jr J( 0.2778 0.0238Jr J( 0.4762
VY.
—C r C \ —/C —r
O o o)
0.3856 0.1078 0.8683




Gibbs sampling and MCMC in practice

The most commonly used method for large Bayes nets
= See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

Can be compiled to run very fast

= Eliminate all data structure references, just multiply and sample
= ~100 million samples per second on a laptop

Can run asynchronously in parallel (one processor per variable)
Many cognitive scientists suggest the brain runs on MCMC



Consistency of Gibbs (see AIMA 13.4.2 for details)

= Suppose we run it for a long time and predict the probability of reaching any
given state at time t: r.(xy,...,x,,) or 1,(x)

= Each Gibbs sampling step (pick a variable, resample its value) applied to a
state x has a probability k(x’ | x) of reaching a next state x’

= SO 1 (X") = 2., k(X" | x) rt/(x) or, in matrix/vector form rt,,; = K,
= When the process is in equilibrium .., =m,=nmsoKn=m

" This has a unique* solution it = P(x,,...,x, | €,,...,€;)
= * Markov chain must be ergodic, i.e., completely connected and aperiodic
= Satisfied if all probabilities are bounded away from 0 and 1

= So for large enough t the next sample will be drawn from the true posterior
= “Large enough” depends on CPTs in the Bayes net; takes longer if nearly deterministic



Bayes Net Sampling Summary

" Prior Sampling P : = Rejection Sampling P(Q | e) :
= Generate complete samples from P(x,,...,x,) = Reject samples that don’t match e

» Likelihood Weighting P(Q | e) : = Gibbs sampling P(Q | e) :

= Weight samples by how well they predict e = Wander around in e space

= Average what you see




