
X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t))

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt, e1:t)
§ = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

1Pre-computed Given by HMMGiven by HMM

X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t))

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)

LHS: P(Xt+1,e1:t, et+1)/P(e1:t, et+1)
RHS: α P(et+1, Xt+1, e1:t)/P(Xt+1, e1:t) * P(Xt+1, e1:t)/ P(e1:t)
RHS: α P(et+1, Xt+1, e1:t) / P(e1:t)
α = P(e1:t) / P(e1:t, et+1) which is the same for all xt+1

X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t))

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)

Why does P(et+1|Xt+1, e1:t) = P(et+1|Xt+1) ?
Variables are independent of non-descendants given parents
If I know X4, nothing else will help be better predict e4

X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t))

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt, e1:t)

åxt
 P(Xt+1| xt, e1:t) P(xt | e1:t) = åxt

 P(Xt+1, xt | e1:t) = P(Xt+1| e1:t)

P(A|B)P(B) = P(A,B) Marginalization over xt

X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t))

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt, e1:t)
§ = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

5Pre-computed Given by HMMGiven by HMM

Variables are
independent of non-
descendants given
parents

“Forward” algorithm

§ P(Xt+1|e1:t+1) = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

§ f1:t+1 = FORWARD(f1:t , et+1) ; f1:t is P(Xt|e1:t)
§ Cost per time step: O(|X|2) where |X| is the number of states
§ Time and space costs are constant, independent of t
§ O(|X|2) is infeasible for models with many state variables
§ We get to invent really cool approximate filtering algorithms

PredictUpdateNormalize

Pre-computed (scalar
for each term in sum)

Given by HMM (vector for
each term in sum)Given by HMM (vector)

*for t=0, note e1:0 is empty

And the same thing in linear algebra

§ Transition matrix T, observation matrix Ot

§ Observation matrix has state likelihoods for Et along diagonal

§ E.g., for U1 = true, O1 = ()

§ Filtering algorithm becomes
§ f1:t+1 = α Ot+1TT f1:t

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

0.2 0
 0 0.9

Example: Weather HMM

Umbrella1 Umbrella2

Weather0 Weather1 Weather2

f(sun) = 0.5
f(rain) = 0.5

0.6
 0.4

f(sun) = 0.25
f(rain) = 0.75

0.45
0.55

f(sun) = 0.154
f(rain) = 0.846

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

P(W0)

sun rain

0.5 0.5

predict predict

update update

Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar

Most Likely Explanation

Inference tasks

§ Filtering: P(Xt|e1:t)
§ belief state—input to the decision process of a rational agent

§ Prediction: P(Xt+k|e1:t) for k > 0
§ evaluation of possible action sequences; like filtering without the evidence

§ Smoothing: P(Xk|e1:t) for 0 ≤ k < t
§ better estimate of past states, essential for learning

§ Most likely explanation: arg maxx1:t
P(x1:t | e1:t)

§ speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

§ State trellis: graph of states and transitions over time

§ arg maxx1:t P(x1:t | e1:t)
§ = arg maxx1:t α P(x1:t , e1:t)
§ = arg maxx1:t P(x1:t , e1:t)

§ = arg maxx1:t P(x0) Õt P(xt | xt-1) P(et | xt)
§ = arg maxx1:t log [P(x0) Õt P(xt | xt-1) P(et | xt)]
§ = arg minx1:t -log P(x0) + å t -log P(xt | xt-1) + -log P(et | xt)

sun

rain

sun

rain

sun

rain

sun

rain

X0 X1 … XT

All given by HMM

Alternative form

Most likely explanation = most probable path

§ State trellis: graph of states and transitions over time

§ Each arc represents some transition xt-1 ® xt
§ Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0))
§ The product of weights on a path is proportional to that state sequence’s probability
§ Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

sun

rain

sun

rain

sun

rain

sun

rain

X0 X1 … XT

Forward / Viterbi algorithms

Forward Algorithm (sum)
For each state at time t, keep track of
the total probability of all paths to it

sun

rain

sun

rain

sun

rain

sun

rain

X0 X1 … XT

Viterbi Algorithm (max)
For each state at time t, keep track of
the maximum probability of any path to it

f1:t+1 = FORWARD(f1:t , et+1)
 = α P(et+1|Xt+1) åxt P(Xt+1| xt) f1:t

m1:t+1 = VITERBI(m1:t , et+1)
 = P(et+1|Xt+1) maxxt P(Xt+1| xt) m1:t

Viterbi algorithm contd.

Time complexity?
O(|X|2 T)

X0 X1 X2 XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1
U1=true U2=false U3=true

0.5

0.5

0.18

0.63

0.09

0.06

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

Space complexity?
O(|X| T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)

Viterbi in negative log space

argmax of product of probabilities
= argmin of sum of negative log probabilities
= minimum-cost path

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47

4.06

0.72

3.84

6.64

2.06

2.47

0.67

3.47

4.06
S

G

Viterbi is essentially breadth-first graph search
What about A*?

CS 188: Artificial Intelligence
Dynamic Bayes Nets and Particle Filters

Slides from Stuart Russell

University of California, Berkeley

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)
§ We want to track multiple variables over time, using

multiple sources of evidence

§ Idea: Repeat a fixed Bayes net structure at each time

§ Variables at time t can have parents at time t or t-1

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

t =1 t =2

G3
a

E3a E3b

G3
b

t =3

DBNs and HMMs

§ Every HMM is a single-variable DBN
§ Every discrete DBN is an HMM

§ HMM state is Cartesian product of DBN state variables

§ Sparse dependencies => exponentially fewer parameters in DBN
§ E.g., 20 Boolean state variables, 3 parents each;

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters

Xt+1Xt

Yt+1Yt

Zt+1Zt
XYZt+1XYZt

Exact Inference in DBNs

§ Variable elimination applies to dynamic Bayes nets

§ Offline: “unroll” the network for T time steps, then eliminate variables to find P(XT|e1:T)

§ Online: eliminate all variables from the previous time step; store factors for current time only
§ Problem: largest factor contains all variables for current time (plus a few more)

t =1 t =2 t =3

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

G3
a

E3a E3b

G3
bG3
b

Application: ICU monitoring

§ State: variables describing physiological state of patient
§ Evidence: values obtained from monitoring devices
§ Transition model: physiological dynamics, sensor dynamics
§ Query variables: pathophysiological conditions (a.k.a. bad things)

24

Toy DBN: heart rate monitoring
parameter
variable

state
variable

sensor
variable

sensor state
variable

ICU data: 22 variables, 1min ave
Measurements of heart rate, blood pressure

Measurements of blood O2 (different places), intracranial pressure

Measurements from ventilator (lung stiffness, CO2 concentration, …)

artifacts with
other causes

coughs

28

Blood pressure measurement

One-second vs one-minute data

ALARM

Particle Filtering

We need a new algorithm!

§ When |X| is more than 106 or so (e.g., 3 ghosts in a 10x20 world), exact
inference becomes infeasible

§ Likelihood weighting fails completely – number of samples needed grows
exponentially with T

X1X0 X2 X3

E1 E2 E3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Av
g a

bs
olu

te
err

or

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

We need a new idea!

§ The problem: sample state trajectories go off into low-probability regions,
ignoring the evidence; too few “reasonable” samples

§ Solution: kill the bad ones, make more of the good ones
§ This way the population of samples stays in the high-probability region
§ This is called resampling or survival of the fittest

t=2 t=7

Particle Filtering

0.01 0.1

0.01 0.03

0.03

0.2

0.02 0.2 0.4

§ Represent belief state by a set of samples
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large

§ A particle is a possible world state
§ (i.e. a possible assignment of values for each

variable at a single timestep)
§ This is how robot localization works in practice

0 0.1

0 0

0

0.2

0 0.2 0.5

Representation: Particles
§ Our representation of P(X) is now a list of N << |X| particles
§ P(x) approximated by number of particles with value x

§ So, many x may have P(x) = 0 !
§ More particles => more accuracy (cf. frequency histograms)
§ Usually we want a low-dimensional marginal

§ E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?”

§ Estimates of low-dimensional marginals more accurate
§ (in log space; equally accurate in absolute terms)

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particle Filtering: Prediction step

§ Particle j in state xt
(j) samples a new state

directly from the transition model:
§ xt+1

(j) ~ P(Xt+1 | xt(j))

§ Here, most samples move clockwise, but some
move in another direction or stay in place

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

§ After observing et+1 :

§ As in likelihood weighting, weight each
sample based on the evidence
§ w(j) = P(et+1| xt+1

(j))

§ Particles that fit the data better get
higher weights, others get lower weights

§ Normalize the weights across all particles

Particle Filtering: Update step

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

 X .17
 X .04
 X .17
 X .08
 X .08
 X .17
 X .02
 X .04
 X .17
 X .08

Particle Filtering: Resample

§ Rather than tracking weighted samples,
we resample

§ N times, we choose from our weighted
sample distribution
(i.e., draw with replacement)

§ Now the update is complete for this
time step, continue with the next one
(with weights reset to 1/N)

Particles:
 (3,2) w=.17
 (2,3) w=.04
 (3,2) w=.17
 (3,1) w=.08
 (3,3) w=.08
 (3,2) w=.17
 (1,3) w=.02
 (2,3) w=.04
 (3,2) w=.17
 (2,2) w=.08

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Summary: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Prediction Update/Weight Resample

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

Consistency: see proof in AIMA Ch. 14 (requires DBN probabilities to be bounded away from 0)

Particle filtering on umbrella model

45

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Av
g a

bs
olu

te
err

or

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

Robot Mapping

§ SLAM: Simultaneous Localization And Mapping
§ Robot does not know map or location
§ State xt(j) consists of position+orientation, map!
§ (Each map usually inferred exactly given sampled

position+orientation sequence: RBPF)

DP-SLAM, Ron Parr

Particle Filter SLAM – Video

[Demo: PARTICLES-SLAM-fastslam.avi]

