Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}, e_{1: t}\right)
$$

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

LHS: $P\left(X_{t+1}, e_{1: t}, e_{t+1}\right) / P\left(e_{1: t}, e_{t+1}\right)$
RUS: $\alpha P\left(e_{t+1}, X_{t+1}, e_{1: t}\right) / P\left(X_{t+1,}, e_{1: t}\right) * P\left(X_{t+1,}, e_{1: t}\right) / P\left(e_{1: t}\right)$
RUS: $\alpha P\left(e_{t+1}, X_{t+1}, e_{1: t}\right) / P\left(e_{1: t}\right)$
$\alpha=P\left(e_{1: t}\right) / P\left(e_{1: t}, e_{t+1}\right)$ which is the same for all x_{t+1}

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

- $\quad=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

Why does $P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right)=P\left(e_{t+1} \mid X_{t+1}\right)$?
Variables are independent of non-descendants given parents If I know X_{4}, nothing else will help be better predict e_{4}

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

- $\quad=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- $\quad=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$

$$
\begin{gathered}
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~A}, \mathrm{~B}) \\
\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right)=\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
\end{gathered}
$$

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

$$
\begin{aligned}
& =\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}\right) \text { Variables are } \\
& \text { independent of non- } \\
& \text { descendants given } \\
& \text { parents }
\end{aligned}
$$

"Forward" algorithm

- $f_{1: t+1}=\operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right) ; f_{1: t}$ is $P\left(X_{t} \mid e_{1: t}\right) *$ for $t=0$, note $e_{1: 0}$ is empty
- Cost per time step: $O\left(|X|^{2}\right)$ where $|X|$ is the number of states
- Time and space costs are constant, independent of t
- $O\left(|X|^{2}\right)$ is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix T, observation matrix O_{t}
- Observation matrix has state likelihoods for E_{t} along diagonal
- E.g., for $U_{1}=$ true, $O_{1}=\left(\begin{array}{cc}0.2 & 0 \\ 0 & 0.9\end{array}\right)$
- Filtering algorithm becomes
- $f_{1: t+1}=\alpha O_{t+1} T^{\top} f_{1: t}$

X_{t-1}	$P\left(X_{t} \mid X_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

\mathbf{W}_{t-1}	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman - Hunting Invisible Ghosts with Sonar

[Demo: Pacman - Sonar - No Beliefs(L14D1)]

Video of Demo Pacman - Sonar

Most Likely Explanation

Inference tasks

- Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
- belief state-input to the decision process of a rational agent
- Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$ for $k>0$
- evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
- better estimate of past states, essential for learning
- Most likely explanation: $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$
- speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

- State trellis: graph of states and transitions over time

- $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$
- $=\arg \max _{x_{1: t}} \alpha P\left(x_{1: t}, e_{1: t}\right)$
- $=\arg \max _{x_{1: t}} P\left(x_{1: t}, e_{1: t}\right)$
- $=\arg \max _{x_{1: t}} P\left(x_{0}\right) \prod_{t} P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$
- $=\arg \max _{x_{1: t}} \log \left[P\left(x_{0}\right) \prod_{t} P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)\right]$
- $=\arg \min _{x_{1: t}}-\log P\left(x_{0}\right)+\sum_{t}-\log P\left(x_{t} \mid x_{t-1}\right)+-\log P\left(e_{t} \mid x_{t}\right)$

Most likely explanation = most probable path

- State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ (arcs to initial states have weight $P\left(x_{0}\right)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum)
For each state at time t, keep track of the total probability of all paths to it

$$
\begin{aligned}
& \boldsymbol{f}_{1: t+1}=\operatorname{FORWARD}\left(\boldsymbol{f}_{1: t}, e_{t+1}\right) \\
& \quad=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \boldsymbol{f}_{1: t}
\end{aligned}
$$

Viterbi Algorithm (max)
For each state at time t, keep track of the maximum probability of any path to it

$$
\begin{aligned}
& \boldsymbol{m}_{1: t+1}=\operatorname{VITERBI}\left(\boldsymbol{m}_{1: t}, e_{t+1}\right) \\
& \quad=P\left(e_{t+1} \mid X_{t+1}\right) \max _{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \boldsymbol{m}_{1: t}
\end{aligned}
$$

Viterbi algorithm contd.

x_{0}

W_{t-1}	$P\left(W_{t} \mid W_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity? $\mathrm{O}\left(|\mathrm{X}|^{2} \mathrm{~T}\right)$

Space complexity?
O(|X| T)

Number of paths? $\mathrm{o}\left(|\mathrm{x}|^{\top}\right)$

Viterbi in negative log space

argmax of product of probabilities

W_{t-1}	$P\left(W_{t} \mid W_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

= argmin of sum of negative log probabilities
$=$ minimum-cost path
Viterbi is essentially breadth-first graph search
What about A*?

CS 188: Artificial Intelligence

 Dynamic Bayes Nets and Particle Filters

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables at time t can have parents at time t or $t-1$

DBNs and HMMs

- Every HMM is a single-variable DBN
- Every discrete DBN is an HMM
- HMM state is Cartesian product of DBN state variables

- Sparse dependencies => exponentially fewer parameters in DBN
- E.g., 20 Boolean state variables, 3 parents each; DBN has $20 \times 2^{3}=160$ parameters, HMM has $2^{20} \times 2^{20}=\sim 10^{12}$ parameters

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Offline: "unroll" the network for T time steps, then eliminate variables to find $P\left(X_{T} \mid \mathrm{e}_{1: \mathrm{T}}\right)$

- Online: eliminate all variables from the previous time step; store factors for current time only
- Problem: largest factor contains all variables for current time (plus a few more)

Application: ICU monitoring

- State: variables describing physiological state of patient
- Evidence: values obtained from monitoring devices
- Transition model: physiological dynamics, sensor dynamics
- Query variables: pathophysiological conditions (a.k.a. bad things)

The enhanced heart-rate DBN's inferences on data from a healthy 40-year-d

ICU data: 22 variables, 1 min ave

Blood pressure measurement

One-second vs one-minute data

Sample blood-draw dataset no. 11

Particle Filtering

We need a new algorithm!

- When $|X|$ is more than 10^{6} or so (e.g., 3 ghosts in a 10×20 world), exact inference becomes infeasible
- Likelihood weighting fails completely - number of samples needed grows exponentially with T

We need a new idea!

- The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples
- Solution: kill the bad ones, make more of the good ones
- This way the population of samples stays in the high-probability region
- This is called resampling or survival of the fittest

Particle Filtering

- Represent belief state by a set of samples
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- A particle is a possible world state
- (i.e. a possible assignment of values for each variable at a single timestep)
- This is how robot localization works in practice

Representation: Particles

- Our representation of $P(X)$ is now a list of $N \ll|X|$ particles
- $P(x)$ approximated by number of particles with value x
- So, many x may have $P(x)=0$!
- More particles => more accuracy (cf. frequency histograms)
- Usually we want a low-dimensional marginal
- E.g., "Where is ghost 1 ?" rather than "Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?"

Particles:

- Estimates of low-dimensional marginals more accurate
- (in log space; equally accurate in absolute terms)

Particle Filtering: Prediction step

- Particle j in state $x_{t}{ }^{(j)}$ samples a new state directly from the transition model:
- $x_{t+1}{ }^{(j)} \sim P\left(X_{t+1} \mid x_{t}^{(j)}\right)$
- Here, most samples move clockwise, but some move in another direction or stay in place
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$
Particles:
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$

$(3,2)$
$(2,2)$

Particle Filtering: Update step

- After observing e_{t+1} :
- As in likelihood weighting, weight each sample based on the evidence
- $w^{(j)}=P\left(e_{t+1} \mid x_{t+1}^{(j)}\right)$
- Particles that fit the data better get higher weights, others get lower weights
- Normalize the weights across all particles

Particles:
$(3,2)$ $(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$

Particle Filtering: Resample

Particles:

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e., draw with replacement)
- Now the update is complete for this time step, continue with the next one (with weights reset to $1 / \mathrm{N}$)
$(3,2) w=.17$
$(2,3) w=.04$
$(3,2) \quad w=.17$
$(3,1) w=.08$
$(3,3) w=.08$
$(3,2) \quad w=.17$
$(1,3) w=.02$
$(2,3) w=.04$
$(3,2) w=.17$
$(2,2) w=.08$
(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Summary: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Consistency: see proof in AIMA Ch. 14 (requires DBN probabilities to be bounded away from 0)

Particle filtering on umbrella model

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- Robot does not know map or location
- State $x_{t}{ }^{(j)}$ consists of position+orientation, map!
- (Each map usually inferred exactly given sampled position+orientation sequence: RBPF)

DP-SLAM, Ron Parr

Particle Filter SLAM - Video

