- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$\begin{pmatrix} X_1 \\ \downarrow \\ \downarrow \\ e_1 \\ e_2 \\ e_3 \\ e_4 \\$$

•
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

- $= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$
 - $= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$
- $= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})$

$$= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$$

Given by HMM Pre-computed Given by HMM

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4)$$

$$(e_1) \qquad (e_2) \qquad (e_3) \qquad (e_4)$$

• $P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$

 $= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$

LHS: $P(X_{t+1}, e_{1:t}, e_{t+1})/P(e_{1:t}, e_{t+1})$ RHS: $\alpha P(e_{t+1}, X_{t+1}, e_{1:t})/P(X_{t+1}, e_{1:t}) * P(X_{t+1}, e_{1:t})/P(e_{1:t})$ RHS: $\alpha P(e_{t+1}, X_{t+1}, e_{1:t}) / P(e_{1:t})$ $\alpha = P(e_{1:t}) / P(e_{1:t}, e_{t+1})$ which is the same for all x_{t+1}

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

•
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

$$= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$$

$$= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$$

Why does $P(e_{t+1}|X_{t+1}, e_{1:t}) = P(e_{t+1}|X_{t+1})$? Variables are independent of non-descendants given parents

If I know X_4 , nothing else will help be better predict e_4

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

$$= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$$

$$= \alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t})$$

$$= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})$$

$$P(A|B)P(B) = P(A,B)$$

$$\sum_{x_t} P(X_{t+1} | x_t, e_{1:t}) P(x_t | e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t | e_{1:t}) = P(X_{t+1} | e_{1:t})$$

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$\begin{pmatrix} X_1 \\ \downarrow \\ \downarrow \\ e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

•
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

- $= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$
 - $= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$
 - $= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})$
 - $= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$ Given by HMM Pre-computed Given by HMM

Variables are independent of nondescendants given parents

"Forward" algorithm

60

AWGGOMG

AM

- Time and space costs are *constant*, independent of *t*
- O(|X|²) is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix *T*, observation matrix *O*_t
 - Observation matrix has state likelihoods for *E_t* along diagonal
 - E.g., for $U_1 = \text{true}, O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$
- Filtering algorithm becomes
 - $f_{1:t+1} = \alpha \ O_{t+1} T^{\mathsf{T}} f_{1:t}$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

W _{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar

Most Likely Explanation

Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k} | e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- **Smoothing**: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- arg $\max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
- = arg $\max_{x_{1:t}} \alpha P(x_{1:t}, e_{1:t})$
- = arg max_{$x_{1:t}} P(x_{1:t}, e_{1:t})$ </sub>

Alternative form

- = arg max_{x1:t} $P(x_0) \prod_t P(x_t \mid x_{t-1}) P(e_t \mid x_t)$
- = arg max_{x1:t} log [$P(x_0) \prod_t P(x_t | x_{t-1}) P(e_t | x_t)$]
- = arg min_{$x_{1:t}$} -log $P(x_0) + \sum_t -\log P(x_t \mid x_{t-1}) + -\log P(e_t \mid x_t)$

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- The *product* of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, *Viterbi algorithm* computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum) For each state at time *t*, keep track of the *total probability of all paths* to it

 $f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1}) \\ = \alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) f_{1:t}$

Viterbi Algorithm (max)

For each state at time *t*, keep track of the *maximum probability of any path* to it

 $m_{1:t+1} = VITERBI(m_{1:t}, e_{t+1})$ = $P(e_{t+1}|X_{t+1}) \max_{X_t} P(X_{t+1}|X_t) m_{1:t}$

Viterbi algorithm contd.

W _{t-1}	P(W _t W _{t-1})		
	sun	rain	
sun	0.9	0.1	
rain	0.3	0.7	

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Viterbi in negative log space

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

argmax of product of probabilities

- = argmin of sum of negative log probabilities
- = minimum-cost path

Viterbi is essentially breadth-first graph search What about A*?

CS 188: Artificial Intelligence Dynamic Bayes Nets and Particle Filters

Slides from Stuart Russell

University of California, Berkeley

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

t =3

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables at time t can have parents at time t or t-1

t =2

t =1

DBNs and HMMs

- Every HMM is a single-variable DBN
- Every discrete DBN is an HMM
 - HMM state is Cartesian product of DBN state variables

- Sparse dependencies => exponentially fewer parameters in DBN
 - E.g., 20 Boolean state variables, 3 parents each;

DBN has 20 x 2^3 = 160 parameters, HMM has 2^{20} x 2^{20} =~ 10^{12} parameters

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Offline: "unroll" the network for T time steps, then eliminate variables to find P(X_T | e_{1:T})

- Online: eliminate all variables from the previous time step; store factors for current time only
- Problem: largest factor contains all variables for current time (plus a few more)

Application: ICU monitoring

- State: variables describing physiological state of patient
- Evidence: values obtained from monitoring devices
- Transition model: physiological dynamics, sensor dynamics
- Query variables: pathophysiological conditions (a.k.a. bad things)

24

Toy DBN: heart rate monitoring

ICU data: 22 variables, 1min ave

Blood pressure measurement

One-second vs one-minute data

Sample blood-draw dataset no. 11

Particle Filtering

We need a new algorithm!

- When |X| is more than 10⁶ or so (e.g., 3 ghosts in a 10x20 world), exact inference becomes infeasible
- Likelihood weighting fails completely number of samples needed grows exponentially with T

We need a new idea!

- The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples
- Solution: kill the bad ones, make more of the good ones
- This way the population of samples stays in the high-probability region
- This is called *resampling* or survival of the fittest

Particle Filtering

- Represent belief state by a set of samples
 - Samples are called *particles*
 - Time per step is linear in the number of samples
 - But: number needed may be large
- A particle is a possible world state
 - (i.e. a possible assignment of values for each variable at a single timestep)
- This is how robot localization works in practice

Representation: Particles

P(x) approximated by number of particles with value x		•	
So, many x may have P(x) = 0 !	•		•
 More particles => more accuracy (cf. frequency histograms) 			
 Usually we want a <i>low-dimensional</i> marginal 			
E.g., "Where is ghost 1?" rather than "Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?"	ł	Partic	les:
Estimates of low-dimensional marginals more accurate		(3,3)	
 (in log space; equally accurate in absolute terms) 		(2,3 (3,3	
		(3,2	- C
		(3,3	
		(3,2	
		(1,2 (3,3	
		(3,3	
		(2,3	;)

Our representation of P(X) is now a list of $N \ll |X|$ particles

Particle Filtering: Prediction step

- Particle *j* in state *x_t^(j)* samples a new state directly from the transition model:
 - $x_{t+1}^{(j)} \sim P(X_{t+1} \mid x_t^{(j)})$
 - Here, most samples move clockwise, but some move in another direction or stay in place

Particle Filtering: Update step

After observing e_{t+1}:

- As in likelihood weighting, weight each sample based on the evidence
 - $w^{(j)} = P(e_{t+1} | x_{t+1}^{(j)})$
- Particles that fit the data better get higher weights, others get lower weights
- Normalize the weights across all particles

Particles:

Particle Filtering: Resample

- Rather than tracking weighted samples, we *resample*
- N times, we choose from our weighted sample distribution (i.e., draw with replacement)
- Now the update is complete for this time step, continue with the next one (with weights reset to 1/N)

(3,2) (3,2)

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Consistency: see proof in AIMA Ch. 14 (requires DBN probabilities to be bounded away from 0)

Particle filtering on umbrella model

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - Robot does not know map or location
 - State x_t^(j) consists of position+orientation, map!
 - (Each map usually inferred exactly given sampled position+orientation sequence: RBPF)

Particle Filter SLAM – Video

[Demo: PARTICLES-SLAM-fastslam.avi]