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Utilities




Utilities

= Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

= Where do utilities come from?

" |nagame, may be simple (+1/-1)
= Utilities summarize the agent’s goals

= Theorem: any “rational” preferences can
be summarized as a utility function

= We hard-wire utilities and let
behaviors emerge
= Why don’t we hard-wire behaviors?




Maximum Expected Utility

" Principle of maximum expected utility:

= Arational agent should chose the action that maximizes its
expected utility, given its knowledge

= Questions:

= Where do utilities come from?

= How do we know such utilities even exist?

= How do we know that averaging makes sense?

= What if our behavior (preferences) can’t be described by utilities?



Utility magnitudes are meaningful
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= For worst-case minimax reasoning, terminal value scale doesn’t matter
= We just want better states to have higher evaluations (get the ordering right)

= The optimal decision is invariant under any monotonic transformation

= For average-case expectimax reasoning, we need magnitudes to be meaningful



Utilities: Uncertain Outcomes

Getting ice cream

Get Single Get Double



Deriving Utilities from Rational Preferences
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Preferences

An agent must have preferences among:
" Prizes: A, B, etc.

= |otteries: situations with uncertain prizes

L= [p/ A; (l_p)l B]

Notation:
= Preference: A > B

= |ndifference: A ~ B

A Prize

A Lottery

-




Rational Preferences

= We want some constraints on preferences before we call them rational, such as:

[ Axiom of Transitivity: (A >B)A (B >C) = (A > () ]

= Costs of irrationality:

= An agent with intransitive preferences can
be induced to give away all of its money
= |f B >C, then an agent with C would pay (say) 1 cent to get B
= |f A > B, then an agent with B would pay (say) 1 cent to get A
= |fC > A, then an agent with A would pay (say) 1 cent to get C




Rational Preferences

The Axioms of Rationality

‘o )

rderability:
(A>B)v(B>A)v(A ~B)

Transitivity:

(A>B)A(B >C)= (A >()
Continuity:

(A>B>C)=dp[p A, 1-p,C]~B
Substitutability:

(A ~B)=Ip,A; 1-p,C]~[p, B; 1-p, C]
Monotonicity:
(A >B)=

\_ (b=q)< [p, A; 1-p,B]l = [g,A; 1-q, B]/

Theorem: Rational preferences imply behavior describable as maximization of expected utility



MEU Principle

= Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

UA)>U(B) <A=8B
U([p1,51; ey pniSn]) - p1U(51) Tt an(Sn)

= |.e.values assigned by U preserve preferences of both prizes and lotteries!
= QOptimal policy invariant under positive affine transformation U’ = aU+b, a>0

= Maximum expected utility (MEU) principle:
" Choose the action that maximizes expected utility

= Note: rationality does not require representing or manipulating utilities and probabilities
= E.g., alookup table for perfect tic-tac-toe



Human Utilities




Human Utilities

= Utilities map states to real numbers. Which numbers?

= Standard approach to assessment (elicitation) of human utilities:

= We want to assign a utility to prize A

= Compare a prize A to a standard lottery Ly between
= “best possible prize” St with probability p
= “worst possible catastrophe” S| with probability 1-p
= Adjust lottery probability p until indifference: A ~ Ly

= Resulting p is a utility in [0,1]

[ Pay S50 ] ~

-

-

0.999999

No change

0.000001

Instant death
J




Money

= Money does not behave as a utility function, but we can
talk about the utility of having money (or being in debt)

= Given a lottery L = [p, SX; (1-p), SY]
= The expected monetary value EMV(L) = pX + (1-p)Y
» The utility is U(L) = pU(SX) + (1-p)U(SY)
= Typically, U(L) < U(EMV(L) )
= |n this sense, people are risk-averse

= E.g., how much would you pay for a lottery ticket
L=[0.5, $10,000; 0.5, S0]?

= The certainty equivalent of a lottery CE(L) is the cash

amount such that CE(L) ~ L /«/M ; $

» The insurance premium is EMV(L) - CE(L) R o

= |f people were risk-neutral, this would be zero!

= Pay aninsurance premium to get out of a lottery

= House burns down, cybercriminals take your company’s data, you die and leave
your family with no income

(a) (b)



Utilities of Sequences




Utilities of Sequences

= What preferences should an agent have over prize sequences?

= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, 0O, 1] or [1,0,0] @




Stationary Preferences

= Theorem: if we assume stationary preferences:
la,, a5, ...] >[by, by, ...] & [c, a4, 05, ...] >[c, by, by, ...]
then there is only one way to define utilities:

= Additive discounted utility:.
U([rg, ry, ry]) = rg + yry + v2r, + ...
wherey € (0,1] is the discount factor
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Decision Networks




Decision Networks

Umbrella




Decision Networks

MEU: choose the action which maximizes the expected utility given the evidence

Can directly operationalize this with
decision networks

= Bayes nets with nodes for utility and
actions

= Lets us calculate the expected utility for
each action

New node types:

= Chance nodes (just like BNs)

= Actions (rectangles, cannot have parents,
act as observed evidence)

= Utility node (diamond, depends on action
and chance nodes)

-
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Decision Networks

= Action selection

Instantiate all evidence

Set action node(s) each
possible way

Calculate posterior for all
parents of utility node, given
the evidence

Calculate expected utility for
each action

Choose maximizing action




Decision Networks

Umbrella = leave

U(leave) Z P(w)U (leave, w)

Umbrella

:O.7-100+0.3-O=70

Umbrella = take

EU(take) Z P(w)U ((take, w)

A W U(AW)
=0.7-204+0.3-70 = 35 W P(W) eave cun 100
sun 0.7 leave rain 0
rain 0.3
Optimal decision = leave take sun 20
take rain 70

MEU(g) = maxEU(a) = 70



Decision Networks: Notation

Umbrella = leave = EU(leave) = Expected Utility of taking action
U(leave) Z P(w)U (leave, w) leave
® |n the parentheses, we write an action
=0.7-100 + 0.3 -0="170 = Calculating EU requires taking an expectation
over chance node outcomes
Umbrella = take = MEU(@) = Maximum Expected Utility, given
EU(take) Z P(w)U (take, w) no information

= |nthe parentheses, we write the evidence (which
nodes we know)

= Calculating MEU requires taking a maximum over
several expectations (one EU per action)

=0.7-204+0.3-70 =35

Optimal decision = leave

MEU(g) = maxEU(a) = 70



Umbrella

Decisions as Outcome Trees

= Almost exactly like expectimax
= What’s changed?



Example: Decision Networks

Umbrella = leave A W U(AW)
Umbrella leave | sun 100
EU(leave|bad) = Z P(w|bad)U (leave, w) leave | rain 0
v take sun 20

= 0.34- 100 + 0.66 - 0 = 34 0 take | rain | 70
Umbrella = take @

EU(take|bad) = »  P(w|bad)U (take, w) W | P(W]|F=bad)
w sun 0.34
=0.34-20+0.66 - 70 = 53 rain 0.66 -

oot | decision - tak Forecast
ptimal decision = take =bad

MEU(F = bad) = max EU(a|bad) = 53




Decision Networks: Notation

= EU(leave|bad) = Expected Utility of choosing
leave, given you know the forecast is bad

Umbrella = leave

EU(leave|bad) = Z P(w|bad)U (leave, w) = Left side of conditioning bar: Action being taken

= Right side of conditioning bar: The random

=0.34-100 +0.66 - 0 = 34 variable(s) we know the value of (evidence)

Umbrella = take = MEU(F=bad) = Maximum Expected Utility,
given you know the forecast is bad
EU(take|bad) = Z P(w|bad)U((take, w) = In the parentheses, we write the evidence (which

nodes we know)
=0.34- 20+ 0.66 - 70 = 53

Optimal decision = take

MEU(F = bad) = max EU(a|bad) = 53



Umbrella

Decisions as Outcome Trees

{b}




Ghostbusters Decision Network

Demo: Ghostbusters with probability

Bust

Ghost Location

:

v

Csensor (2,1))



Video of Demo Ghostbusters with Probability

" Game:

m Costs 1 to make a
measurement

= Measurement gives
noisy estimate of
distance to ghost

= When we blast, game
is over

= |f we blast the ghost,
we get utility of 250



Value of Information




Value of Information

ldea: compute value of acquiring evidence D
= Can be done directly from decision network

@]

DrillLoc a

Q

Example: buying oil drilling rights
= Two blocks A and B, exactly one has oil, worth k
= You can drill in one location
= Prior probabilities 0.5 each, & mutually exclusive
= Drilling in either A or B has EU = k/2, MEU = k/2

~|lo|lOo|x] C

Question: what’s the value of information of O?
= Value of knowing which of A or B has oil
= Value is expected gain in MEU from new info
= Survey may say “oil in a” or “oil in b”
= |f we know OilLoc, MEU is k (either way)
= Gainin MEU from knowing OilLoc?
= VPI(OilLoc) =k —k/ 2 = k/2
= Fair price of information: k/2




Value of Information Example: Weather

MEU with no evidence Umbrella
leave | sun 100
MEU(@) = m(?x EU(CL) =170 0 leave | rain 0

MEU if forecast is bad @ take | sun [ 20
take rain 70
MEU(F = bad) = max EU(a|bad) = 53

argmax, is “take umbrella”
MEU if forecast is good

MEU(F = good) = max EU(a|good) = 95 @

argmax, is “leave umbrella”

Forecast distribution

F P(F)
wor [0 | £) MEU(F) = 0.59- (95) +0.41 - (53) =77.8
i 778 —T70=7.8

VPI(E'le) = (Z P(e’ye)MEU(e,e’)> — MEU(e)

e




“Value of Perfect Information”

Assume we have evidence E=e. Value if we act now: {+e}
a

MEU (e) = méaxz P(sle) U(s,a)

s P(s | +e)
Assume we see that E’ = e’. Value if we act then: U
A /

MEU (e, e') = mgxzsj P(sle,e’) U(s,a) tre, +e’)
a

BUT E’ is a random variable whose value is

unknown, so we don’t know what e’ will be P(s | +e, +e’)

Expected value if E’ is revealed and then we act:

MEU(e, E') = Z P(e'le)MEU(e, e')

Value of information: how much MEU goes up
by revealing E’ first then acting, over acting now:

VPI(E'le) = MEU(e, E') — MEU(e)




VPI: Notation

= MEU(e) = Maximum Expected Utility, given evidence E=e
* |nthe parentheses, we write the evidence (which nodes we know)
= (Calculating MEU requires taking a maximum over several expectations (one EU per action)

= VPI(E'|e) = Expected gain in utility for knowing the value of E', given that | know the

value of e so far
= |Left side of conditioning bar: The random variable(s) we want to know the value of revealing
= Right side of conditioning bar: The random variable(s) we already know the value of

= (Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome
of E', because we don’t know the value of E')

MEU (e) = maxz P(sle) U(s,a)
R VPI(E'|e) = (Z P(e’|e)I\/IEU(e,e’)) — MEU(e)

e

N /
MEU (e, e') = méaxg P(sle,e’) U(s,a)



VPI: Computation Workflow

MEU(e) = max EU(ale)
MEU(e,e') = max EU(a|e,€/) (calculate this for all values e’ that E’ could take)

MEU(e, E') = Z P(e'le)MEU(e, e')

(&

MEU(e, E') — MEU(e) = VPI(E'|e)



Video of Demo Ghostbusters with VPI

" Game:

m Costs 1 to make a
measurement

= Measurement gives
noisy estimate of
distance to ghost

= When we blast, game
is over

= |f we blast the ghost,
we get utility of 250



VPI Properties

= Nonnegative e
nrot \o (€
VE' e : VPI(E'le) > 0 7/:&00" gt - @.
(Positive if different observed values of e’ lead to Guersn

different optimal decisions)
= Subadditive

VPI(E;, Ele) < VPI(Ejle) + VPI(Ey|e)

(think of observing the same E; twice)

= Order-independent %»gﬁ»@
VPI(E;, Eyle) = VPI(E,|e) + VPI(Eyle, E;) c@ % i
= VPI(Eyle) + VPI(Ejle, E},) &



Value of information contd.

= General idea: value of information = expected improvement in decision quality
from observing value of a variable
= E.g., oil company deciding on seismic exploration and test drilling
= E.g., doctor deciding whether to order a blood test
= E.g., person deciding on whether to look before crossing the road

= Decision network contains everything needed to compute it!

= VPI(E; | e) = [ZE_,I.P(e,- | e) max, EU(a|e,e) | - max, EU(a]e)



Quick VPI Questions

= The soup of the day is either clam chowder or
split pea, but you wouldn’t order either one.
What’s the value of knowing which it is?

= There are two kinds of plastic forks at a picnic.
One kind is slightly sturdier. What’s the value of
knowing which?

= You're playing the lottery. The prize will be SO or
$100. You can play any number between 1 and
100 (chance of winning is 1%). What is the value
of knowing the winning number?




Value of Imperfect Information?

= No such thing (as we formulate it)

& = |nformation corresponds to the

0
( "-:---0 RN observation of a node in the
\ \

decision network

Z’ ;
@ = |f data is “noisy” that just means we
<A\LL don’t observe the original variable,
> — but another variable which is a noisy

version of the original one




VPl Question

VPI(ScoutingReport) ?

VPI(OilLoc) ?

VPI(Weather) ?

DrillLoc

Scouting

VPI(OilLoc | ScoutingReport) vs
VPI(ScoutingReport | OilLoc) ?

Generally:
VPI( Z | CurrentEvidence) =0
if Parents(U) Il Z | CurrentEvidence




Bonus slide (if time)



Post-decision Disappointment: the Optimizer’s Curse

= Usually we don’t have direct access to
exact utilities, only estimates
= E.g., you could make one of k investments

= An unbiased expert assesses their expected
net profit V4,...,V
" You choose the best one V/*

= With high probability, its actual value is
considerably less than V*

= This is a serious problem in many areas:
» Future performance of mutual funds
= Efficacy of drugs measured by trials
= Statistical significance in scientific papers
= Winning an auction

09 -
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Suppose true net profit is 0
and estimate ~ N(0,1);
Max of k estimates:

k=30 (%

k=10 /7

PAN
k=3 ,' \\
/

-3 2 -1 0 1 2 3 4 5

Error in utility estimate



