Announcements

e HW6: due Tuesday, March 19, 11:59 PM PT
.
* Project 4: due Friday, March 22, 11:59 PM PT E - E

[=]

Pre-scan attendance
QR code now!

(Password appears later)

Recap: Decision Networks

Recap: Decision Networks

Umbrella

Weather

Recap: Decision Networks

MEU: choose the action which maximizes the expected utility given the evidence

Can directly operationalize this with
decision networks

Umbrella

= Bayes nets with nodes for utility and
actions

= Lets us calculate the expected utility for
each action

New node types: Weather

= Chance nodes (just like BNs) O

= Actions (rectangles, cannot have parents,
act as observed evidence)
= Utility node (diamond, depends on action <>

and chance nodes)

Recap: Decision Networks

= Action selection

® |nstantiate all evidence

Umbrella

= Set action node(s) each
possible way

= Calculate posterior for all
parents of utility node, given
the evidence

Weather

= Calculate expected utility for
each action v

= Choose maximizing action

Recap: Decision Networks Example

Umbrella = leave

EU(leave|bad) = Z P(w|bad)U (leave, w)

=0.34-100+0.66 -0 = 34

Umbrella = take
EU(take|bad) = Z P(w|bad)U (take, w)
=0.34-20+0.66 - 70 = 53

Optimal decision = take

MEU(F = bad) = max EU(a|bad) = 53

Umbrella

Weather

A W U(AW)
leave | sun 100
leave | rain 0
take sun 20
take rain 70

P(W |F=bad)

sun

0.34

rain

0.66

\ 4
Forecast
=bad

Recap: Decision Networks Notation

= EU(leave|bad) = Expected Utility of choosing
leave, given you know the forecast is bad
= Left side of conditioning bar: Action being taken

Umbrella = leave
EU(leave|bad) = Z P(w|bad)U (leave, w)

= Right side of conditioning bar: The random
variable(s) we know the value of (evidence)

* MEU(F=bad) = Maximum Expected Utility,
given you know the forecast is bad

EU(take|bad) Z P(w|bad)U (take, w) " |nthe parentheses, we write the evidence (which
nodes we know)

=0.34-100+0.66 -0 = 34

Umbrella = take

=0.34-20+0.66 - 70 = 53

Optimal decision = take

MEU(F = bad) = max EU(a|bad) = 53

Recap: Value of Perfect Information

MEU with no evidence Umbrella
leave | sun 100
MEU(s) = max EU(a) = 70 Ol sy

. . take sun 20
MEU if forecast is bad -
take rain 70

MEU(F = bad) = max EU(a|bad) = 53

_ _ argmax, is “take umbrella”
MEU if forecast is good

MEU(F = good) = max EU(a|good) = 95 @

Forecast distribution argmax, is “leave umbrella”

F P(F)

—od | 055 [> MEU(F) = 0.59 - (95) + 0.41 - (53) = 77.8
e |08 778 —70=17.8

VPI(E'|e) = (Z P(e’e)MEU(e,e’)) — MEU(e)

(&

Recap: VPI Notation

= MEU(e) = Maximum Expected Utility, given evidence E=e
" |n the parentheses, we write the evidence (which nodes we know)
= Calculating MEU requires taking a maximum over several expectations (one EU per action)

= VPI(E'|e) = Expected gain in utility for knowing the value of E', given that | know the
value of e so far
= |Left side of conditioning bar: The random variable(s) we want to know the value of revealing
= Right side of conditioning bar: The random variable(s) we already know the value of

= Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome
of E', because we don’t know the value of E')

MEU(e) = max) P(sle) U(s,a)
N VPI(E'|e) = (Z P(e’e)l\/IEU(e,e’)) — MEU(e)

(&

N /
MEU(e,e’) = mc?xg P(sle,e’) U(s,a)

CS 188: Artificial Intelligence

Markov Decision Processes

Spring 2023

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Actions + Search + Probabilities + Time

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

= Asetofstatess €S

= AsetofactionsaeA

= A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = Clt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

“Markov” as in Markov Chains? HMMs?

=)0 -~ Qa0 Ox L

Markov Chain

Hidden Markov Model

Ao | | [AL]] |A 777

Partially Observable

Markov Decision Process Markov Decision Process

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy n*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
= |t computed the action for a single state only

Optimal Policies

o N
T Il
= ©
I~ o

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0.5

Slow

Overheated

Example: Racing

S a s' T(s,a,s’) | R(s,a,s’)
1.0 +1
0.5 +2
0.5 +2
0.5 +1
0.5 +1 N
1.0 -10
1.0 0
Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

As — S iS a State

~

\e /—> (s,a,s’) called a transition
s,a,s’ T(s,a,s’) = P(s’[s,a) “
) R(s,a,s’)
N\

Recap: Utilities of Sequences

Recap: Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0,0]

Recap: Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Visualizing Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences*

* Theorem: if we assume stationary preferences: g
<_!y\@_>

[al,ag, .] ~— [bl,bg, -]

0

[Tv a1,dz, ..] >~ [T, bl,bg, ..]

" Then: there are only two ways to define utilities

= Additive utility: U([rg,71,72,...]) =r0g+711+710+ -

= Discounted utility: U([rg,71,72,...]) = rg+yr1 +7%r2- -

Quiz: Discounting

Given: 10 1
, a b C d 8]
= Actions:
= Fast
= West

= Exit (only available in exit states a, €e)

= Transitions: deterministic
Quiz 1: For y =1, what is the optimal policy?

Quiz 2: For y=0.1, what is the optimal policy?

Quiz 3: For which y are West and East equally good when in state d?

10

10

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0O<y<1

U([ro,.--ro0)) = > v'r¢ < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy) 5,8

= MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
s (s, a)is a
" The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 58,5 (s,a,8") is a
, transition

(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Gridworld Display

AFTER 100 ITERATIONS Noise =0

Discount=1
Living reward =0

Snapshot of Demo — Gridworld Q Values

5P

s

Noise =0

Discount=1

Snapshot of Demo — Gridworld V Values

GCridworld Display

..

.

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =1

Living reward =0

Snapshot of Demo — Gridworld Q Values
&3
ANV VN ;

.

DD

Q-VALUES AFTER 100 ITERATIONS Ngise=0.2

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Noise = 0.2
D nt=0.9
Living reward =0

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =-0.1

Snapshot of Demo — Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS Noise = 0.2

Values of States

= Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s [R(s, a,s’) + 'yV*(s’)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

Racing Search Tree

Racing Search Tree

A

LIETImEL]

LIEEINEL

I

FIETTME TR L]

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

NEE RN

R CHER TR

———

—

—

-

W

FIETIRELL

LIETImEL]

Computing Time-Limited Values

.A.AA 'A 'AA s

NN N RN RN

VT T T | O O i VT T O O O e VOO O |

llIIIIl' I "I I1I|l||xll' - llllllll . Illllljl I|III| . III'IIA' I lxIl'

(=
(=
(=
(=

VT CRERREERI TR TR TR T

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

= Va(@)

T

CROCR A

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Value lteration

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

S a s' T(s,a,s’) | R(s,a,s’)
Slow 1.0 +1
Fast 0.5 +2
Fast 0.5 +2
Slow 0.5 +1
Slow 0.5 +1
Fast = [1.0 -10
: 5?“;9;* end) | w10 0

Viet1(8) + maaXZT(s,a,s’) {R(s,a, s + VVk(s’)]

S
Assume no discount!

Example: Value Iteration

1.0

Fast

Fast 05 +2

0.5

Overheated

+2

Assume no discount!

! [20] Vicpa(5) < max X T, a,8) (R, a,8) + 7 V()

S

Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ryn / \ /

= But everything is discounted by yk that far out
= So V, and V,; are at most y* max|R| different
= So as kincreases, the values converge

Next Time: Policy-Based Methods

