Announcements

- HW6: due Tuesday, March 19, 11:59 PM PT
- Project 4: due Friday, March 22, 11:59 PM PT

Pre-scan attendance QR code now!

(Password appears later)

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

- Action selection
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action

Recap: Decision Networks Example

Recap: Decision Networks Notation

Umbrella = leave

$$EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w)$$
$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

Umbrella = take

$$EU(take|bad) = \sum_{w} P(w|bad)U(take, w)$$
$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

Optimal decision = take

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

- EU(leave|bad) = Expected Utility of choosing leave, given you know the forecast is bad
 - Left side of conditioning bar: Action being taken
 - Right side of conditioning bar: The random variable(s) we know the value of (evidence)
- MEU(F=bad) = Maximum Expected Utility, given you know the forecast is bad
 - In the parentheses, we write the evidence (which nodes we know)

Recap: Value of Perfect Information

MEU with no evidence

$$MEU(\phi) = \max_{a} EU(a) = 70$$

- (-)

MEU if forecast is bad

$$\begin{split} \mathrm{MEU}(F = \mathrm{bad}) &= \max_{a} \mathrm{EU}(a|\mathrm{bad}) = 53 \\ & \text{argmax}_a \text{ is "take umbrella"} \\ \mathrm{MEU} \text{ if forecast is good} \end{split}$$

$$\begin{array}{ll} \mathrm{MEU}(F=\mathrm{good}) = \max_{a} \mathrm{EU}(a|\mathrm{good}) = 95\\ \text{Forecast distribution} & argmax_a \text{ is "leave umbrella"} \end{array}$$

$$\begin{array}{c|c} F & P(F) \\ \hline good & 0.59 \\ \hline bad & 0.41 \end{array} \end{array} & MEU(F) = 0.59 \cdot (95) + 0.41 \cdot (53) = 77.8 \\ 77.8 - 70 = 7.8 \\ \hline VPI(E'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e) \\ \end{array}$$

А	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Recap: VPI Notation

- MEU(e) = Maximum Expected Utility, given evidence E=e
 - In the parentheses, we write the evidence (which nodes we know)
 - Calculating MEU requires taking a maximum over several expectations (one EU per action)
- VPI(E'|e) = Expected gain in utility for knowing the value of E', given that I know the value of e so far
 - Left side of conditioning bar: The random variable(s) we want to know the value of revealing
 - Right side of conditioning bar: The random variable(s) we already know the value of
 - Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome of E', because we don't know the value of E')

$$\mathsf{MEU}(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$$
$$\mathsf{VPI}(E'|e) = \left(\sum_{e'} P(e'|e)\mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e)$$
$$\mathsf{MEU}(e,e') = \max_{a} \sum_{s} P(s|e,e') U(s,a)$$

CS 188: Artificial Intelligence

Markov Decision Processes

Spring 2023

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Actions + Search + Probabilities + Time

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

=

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

"Markov" as in Markov Chains? HMMs?

$$X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots \rightarrow$$

Markov Chain

Markov Decision Process

Hidden Markov Model

Partially Observable Markov Decision Process

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policies

R(s) = -0.01

R(s) = -0.03

R(s) = -2.0

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast

Example: Racing

1.0

Overheated

-10

Fast

S	а	s'	T(s,a,s')	R(s,a,s')	
	Slow		1.0	+1	
	Fast		0.5	+2	
	Fast		0.5	+2	
	Slow		0.5	+1	0.5 +1
	Slow		0.5	+1	+1 Slow
	Fast		1.0	-10	Slow Warm
	(end)		1.0	0	Fast 0.5 +2 1.0 1.0 1.0

MDP Search Trees

Recap: Utilities of Sequences

Recap: Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

Recap: Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Visualizing Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])</p>

Stationary Preferences*

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Quiz: Discounting

- Actions:
 - East
 - West
 - Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For γ = 0.1, what is the optimal policy?

10		1
10		1

Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s

Snapshot of Demo – Gridworld V Values

0 0	Gridworld Display				
	1.00	• 1.00	• 1.00	1.00	
	1.00		1.00	-1.00	
	1.00	1.00	1.00	∢ 1.00	
	VALUES AFTER 100 ITERATIONS				

Snapshot of Demo – Gridworld Q Values

Snapshot of Demo – Gridworld V Values

0 0	0	Gridworl	d Display	_
	1.00 →	1.00 →	1.00 >	1.00
	1.00		∢ 1.00	-1.00
	1.00	∢ 1.00	∢ 1.00	1.00
	VALUES	S AFTER 1	LOO ITERA	ATIONS

Snapshot of Demo – Gridworld Q Values

Snapshot of Demo – Gridworld V Values

0 0	Cridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	•	◀ 0.43	▲ 0.48	∢ 0.28	
	VALUES	S AFTER 1	LOO ITERA	ATIONS	

Snapshot of Demo – Gridworld Q Values

Snapshot of Demo – Gridworld V Values

00	Gridworld Display				
	0.31 →	0.51 →	0.72 →	1.00	
	^		^		
	0.15		0.36	-1.00	
	^		^		
	0.01	0.01 →	0.15	∢ -0.09	
	VALUES AFTER 100 ITERATIONS				

Snapshot of Demo – Gridworld Q Values

Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1

Computing Time-Limited Values

Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

0 0	Gridworl	d Display	
0.00	0.00	0.00	0.00
		^	
0.00		0.00	0.00
^	_	^	
0.00	0.00	0.00	0.00
VALU	S AFTER	O ITERA	TONS

○ ○ Gridworld Display					
Г					
	0.00	0.00	0.00 →	1.00	
	^				
	0.00		∢ 0.00	-1.00	
ŀ	^	^	^		
	0.00	0.00	0.00	0.00	
	VALUES AFTER 1 ITERATIONS				

Gridworld Display					
• 0.00	0.00)	0.72)	1.00		
• 0.00		• 0.00	-1.00		
•	• 0.00	•	0.00		
VALII	VALUES AFTER 2 TTERATIONS				

k=3

0	0	Gridworl	d Display		
	0.00)	0.52 →	0.78)	1.00	
	• 0.00		• 0.43	-1.00	
	• 0.00	• 0.00	•	0.00	
	VALUES AFTER 3 ITERATIONS				

k=4

0 0	Gridworl	d Display		
0.37 ▸	0.66)	0.83)	1.00	
•		• 0.51	-1.00	
• 0.00	0.00 →	• 0.31	∢ 0.00	
VALUES AFTER 4 ITERATIONS				

O O O Gridworld Display				
	0.51 →	0.72 →	0.84)	1.00
	• 0.27		• 0.55	-1.00
	•	0.22)	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS				

C C Gridworld Display				
0.59	▶ 0.73 ▶	0.85)	1.00	
• 0.41		• 0.57	-1.00	
• 0.21	0.31 →	• 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS				

○ ○ Gridworld Display				
0.62 →	0.74 ▸	0.85)	1.00	
• 0.50		• 0.57	-1.00	
• 0.34	0.36)	• 0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

0 0	Gridworl	d Display	
0.63)	0.74 →	0.85)	1.00
• 0.53		• 0.57	-1.00
• 0.42	0.39 →	▲ 0.46	∢ 0.26
VALUI	S AFTER	8 ITERA	FIONS

Gridworld Display				
	0.64)	0.74 →	0.85)	1.00
	• 0.55		• 0.57	-1.00
	▲ 0.46	0.40 →	• 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

Gridworld		d Display	
0.64)	0.74)	0.85)	1.00
• 0.56		• 0.57	-1.00
• 0.48	∢ 0.41	• 0.47	◀ 0.27
VALUE	S AFTER	10 ITERA	TIONS

00	○ ○ Gridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	• 0.56		• 0.57	-1.00	
	• 0.48	∢ 0.42	• 0.47	∢ 0.27	
VALUES AFTER 11 ITERATIONS					

O O O Gridworld			d Display	
	0.64)	0.74 →	0.85)	1.00
	^		^	
	0.57		0.57	-1.00
	^		^	
	0.49	◀ 0.42	0.47	∢ 0.28
VALUES AFTER 12 ITERATIONS				

Gridworld Display				
0.64)	0.74)	0.85)	1.00	
• 0.57		• 0.57	-1.00	
0.49	∢ 0.43	• 0.48	∢ 0.28	
VALUES AFTER 100 ITERATIONS				

Value Iteration

Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Value Iteration

S	а	s'	T(s,a,s')	R(s,a,s')
	Slow		1.0	+1
	Fast		0.5	+2
	Fast		0.5	+2
	Slow		0.5	+1
	Slow		0.5	+1
	Fast		1.0	-10
	(end)		1.0	0

 $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$ Assume no discount!

Example: Value Iteration

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

Next Time: Policy-Based Methods