
Announcements

• HW6: due Tuesday, March 19, 11:59 PM PT
• Project 4: due Friday, March 22, 11:59 PM PT

Pre-scan attendance 
QR code now!

(Password appears later)
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Recap: Decision Networks
§ MEU: choose the action which maximizes the expected utility given the evidence

Weather

Forecast

Umbrella

U

§ Can directly operationalize this with 
decision networks
§ Bayes nets with nodes for utility and 

actions

§ Lets us calculate the expected utility for 
each action

§ New node types:

§ Chance nodes (just like BNs)

§ Actions (rectangles, cannot have parents, 
act as observed evidence)

§ Utility node (diamond, depends on action 
and chance nodes)



Recap: Decision Networks

Weather

Forecast

Umbrella

U

§ Action selection
§ Instantiate all evidence

§ Set action node(s) each 
possible way

§ Calculate posterior for all 
parents of utility node, given 
the evidence

§ Calculate expected utility for 
each action

§ Choose maximizing action



Recap: Decision Networks Example

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take



Recap: Decision Networks Notation

§ EU(leave|bad) = Expected Utility of choosing 
leave, given you know the forecast is bad
§ Left side of conditioning bar: Action being taken
§ Right side of conditioning bar: The random 

variable(s) we know the value of (evidence)

§ MEU(F=bad) = Maximum Expected Utility, 
given you know the forecast is bad
§ In the parentheses, we write the evidence (which 

nodes we know)

Umbrella = leave

Umbrella = take

Optimal decision = take



Recap: Value of Perfect Information

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution

argmaxa is “take umbrella”

argmaxa is “leave umbrella”



Recap: VPI Notation

§ MEU(e) = Maximum Expected Utility, given evidence E=e
§ In the parentheses, we write the evidence (which nodes we know)
§ Calculating MEU requires taking a maximum over several expectations (one EU per action)

§ VPI(E'|e) = Expected gain in utility for knowing the value of E', given that I know the 
value of e so far
§ Left side of conditioning bar: The random variable(s) we want to know the value of revealing
§ Right side of conditioning bar: The random variable(s) we already know the value of
§ Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome 

of E', because we don’t know the value of E')
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Spring 2023
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[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Actions + Search + Probabilities + Time



Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North 

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have 

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards



Grid World Actions
Deterministic Grid World Stochastic Grid World



Markov Decision Processes

§ An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward function R(s, a, s’) 
§ Sometimes just R(s) or R(s’)

§ A start state
§ Maybe a terminal state

§ MDPs are non-deterministic search problems
§ One way to solve them is with expectimax search
§ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



What is Markov about MDPs?

§ “Markov” generally means that given the present state, the 
future and the past are independent

§ For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

§ This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



“Markov” as in Markov Chains? HMMs?

X1X0 X2 X3

Markov Chain

Hidden Markov Model

X1X0 X2 X3

E1 E2 E3

Markov Decision Process

X1X0 X2 X3

A0 A1 A2

R0 R1 R2

Partially Observable 
Markov Decision Process

???



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

§ In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

§ For MDPs, we want an optimal policy p*: S → A
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes        

expected utility if followed
§ An explicit policy defines a reflex agent

§ Expectimax didn’t compute entire policies
§ It computed the action for a single state only



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing



Example: Racing
§ A robot car wants to travel far, quickly
§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Example: Racing

s a s' T(s,a,s’) R(s,a,s’)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0



Racing Search Tree



MDP Search Trees
§ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a
(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a 
q-state



Recap: Utilities of Sequences



Recap: Utilities of Sequences

§ What preferences should an agent have over reward sequences?

§ More or less?

§ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Recap: Discounting

§ It’s reasonable to maximize the sum of rewards
§ It’s also reasonable to prefer rewards now to rewards later
§ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Visualizing Discounting

§ How to discount?
§ Each time we descend a level, we 

multiply in the discount once

§ Why discount?
§ Sooner rewards probably do have 

higher utility than later rewards
§ Also helps our algorithms converge

§ Example: discount of 0.5
§ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
§ U([1,2,3]) < U([3,2,1])



Stationary Preferences*

§ Theorem: if we assume stationary preferences:

§ Then: there are only two ways to define utilities

§ Additive utility:

§ Discounted utility:



Quiz: Discounting

§ Given:

§ Actions: 
§ East
§ West
§ Exit (only available in exit states a, e)

§ Transitions: deterministic

§ Quiz 1: For g = 1, what is the optimal policy?

§ Quiz 2: For g = 0.1, what is the optimal policy?

§ Quiz 3: For which g are West and East equally good when in state d?



Infinite Utilities?!

§ Problem: What if the game lasts forever?  Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually 
be reached (like “overheated” for racing)



Recap: Defining MDPs

§ Markov decision processes:
§ Set of states S
§ Start state s0
§ Set of actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’



Solving MDPs



Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0
Discount = 1
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0
Discount = 1
Living reward = 0



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 1
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 1
Living reward = 0



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = -0.1



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = -0.1



Values of States

§ Fundamental operation: compute the (expectimax) value of a state
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax computed!

§ Recursive definition of value:

a

s

s, a

s,a,s’
s’



Racing Search Tree



Racing Search Tree



Racing Search Tree

§ We’re doing way too much 
work with expectimax!

§ Problem: States are repeated 
§ Idea: Only compute needed 

quantities once

§ Problem: Tree goes on forever
§ Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

§ Note: deep parts of the tree 
eventually don’t matter if γ < 1



Computing Time-Limited Values



Time-Limited Values

§ Key idea: time-limited values

§ Define Vk(s) to be the optimal value of s if the game ends 
in k more time steps
§ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Value Iteration



Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

Assume no discount!

s a s' T(s,a,s’) R(s,a,s’)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0



Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!



Convergence*

§ How do we know the Vk vectors are going to converge?

§ Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

§ Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth 

k+1 expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge



Next Time: Policy-Based Methods


