Announcements

e HW6: due (today!) Tuesday, March 19, 11:59 PM PT
* Project 4: due Friday, March 22, 11:59 PM PT

(=] i [m]

[=]

Pre-scan attendance
QR code now!

(Password appears later)

CS 188: Artificial Intelligence

Markov Decision Processes II

Spring 2023 --- Universiy of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of (discounted) rewards

Recap: MDPs

= Markov decision processes:
= States S
= Actions A
" Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount v)
= Start state s,

= Quantities:
" Policy = map of states to actions
= Utility = sum of discounted rewards
» Values = expected future utility from a state (max node)
= Q-Values = expected future utility from a g-state (chance node)

Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and

. _ sisa
acting optimally state
= The value (utility) of a g-state (s,a): és_’;gti: :

Q’(s,a) = expected utility starting out -
having taken action a from state s and s,a,s’ (s,a,s) is a
(thereafter) acting optimally transition

=" The optimal policy:
n'(s) = optimal action from state s

[Demo: gridworld values (L9D1)]

Gridworld Values V*

Gridworld Display

VALUES AFTER 100 ITERATIONS

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(s,a) =3 T(s,a,5) {R(S, a,s’) + ’yV*(s’)} o

V*(s) = mO?XZT(S,a, s") {R(s,a, s + ny*(s')}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Car Racing MDP

Overheated

Racing Search Tree

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

= Va(@)

T

CROCR A

[Demo — time-limited values (L8D6)]

Example: Value Iteration

S a s' T(s,a,s’) | R(s,a,s’)
Slow 1.0 +1
Fast 0.5 +2
Fast 0.5 +2
Slow 0.5 +1
Slow 0.5 +1
Fast = [1.0 -10
: 5?“;9;* end) | w10 0

Viet1(8) + maaXZT(s,a,s’) {R(s,a, s + VVk(s’)]

S
Assume no discount!

Example: Value Iteration

1.0

Fast

Fast 05 +2

0.5

Overheated

+2

Assume no discount!

! [20] Vicpa(5) < max X T, a,8) (R, a,8) + 7 V()

S

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Value lteration

= Bellman equations characterize the optimal values:

V*i(s) = mO?XZT(S, a,s) {R(s, a,s’) + ny*(s/)}

S

= Value iteration computes them:

Viet1(s) <+ mC?XZT(s, a,s) {R(s, a,s’) + nyk(s/)}

S

= Value iteration is just a fixed point solution method

= ... though the V, vectors are also interpretable as time-limited values

Value lteration

Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ryn / \ /

= But everything is discounted by yk that far out
= So V, and V,; are at most y* max|R| different
= So as kincreases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

-"s,a,S

;\A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 1t(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:
V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) + V()]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo (s) =0 ,s;”%f(s),s’
.

ka—l—l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + ’YV]CW(S,)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

1

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

=" |t’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

" Let’s imagine we have the optimal g-values: WW
ANV
= How should we act? W-}q
= Completely trivial to decide! 2 ‘”’9 00

" |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + ’ka(s’)]

S

= Problem 1: It’s slow — O(S2A) per iteration

" Problem 2: The “arg max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) < Y. T(s,mi(s),s') |R(s,mi(s),s") + v V(s

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + nyWi(S/)}

S

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Recap: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
" Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are —they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
» They differ only in whether we plug in a fixed policy or max over actions

Planning Requires a Model!

Planning Requires a Model!

Overheated

Planning Requires a Model!

Planning Requires a Model!

[] Vaslui

Pitesti

98 _
[] Hirsova
] Mehadia

75
Dobreta [J

. Eforie
] Giurgiu

Planning vs. Learning

= Markov decision processes:
= States S
= Actions A
" Transitions T(s,a,s’) = P(s’|s,a)
= Rewards R(s,a,s’)
= Discounty
= Start state s,

How can we learn these quantities?

One-Arm Bandits

= Actions: Blue, Red
= States: Win, Lose

Double-Bandit MDP

-

No discount

100 time steps

Both states have
the same value

~

MDP Planning

= Solving MDPs is offline planning

" You determine all quantities through computation
" You need to know the details of the MDP
" You do not actually play the game!

-

-

Value
Play Red 150
Play Blue 100

\

-

No discount
100 time steps

Both states have
the same value

~

Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

Planning With an Unknown Model

= Rules changed! Red’s win chance is different.

Let’s Play!

SO SO SO S2 SO
S2 SO0 SO SO SO

What Just Happened?

» That wasn’t planning, it was learning!
= Technically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

" |[mportant ideas in machine learning that came up
= Sampling: because of chance, you have to try things repeatedly
" Parameter estimation: what is the most likely explanation of the data?
* More data = better estimates

Next Time: Machine Learning!

