
• HW7: due Today, Apr 2, 11:59 PM PT
• Releasing later this week:
• HW8: due Tuesday, April 9, 11:59 PM PT
• Project 5: due Tuesday, April 16, 11:59 PM PT

• Releasing next week:
• HW9: due Tuesday, April 16, 11:59 PM PT

• TA 1-1s: see announcement on Ed
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Perceptrons

Spring 2024
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Recap: Training and Machine Learning

§ Big idea: ML algorithms learn patterns between features and labels from data
§ You don’t have to reason about the data yourself
§ You’re given training data: lots of example datapoints and their actual labels

Training: Learn patterns from labeled data, and 
periodically test how well you’re doing

Eventually, use your algorithm to 
predict labels for unlabeled data



Classification: Ham vs. Spam Emails

Dear Sir.

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, 
but when I plugged it in, hit the power 
nothing happened.



Classification: Digit Recognition

§ Input: images / pixel grids
§ Output: a digit 0-9

§ Setup:
§ Get a large collection of example images, each labeled with a digit
§ Note: someone has to hand label all this data!
§ Want to learn to predict labels of new, future digit images

§ Features: The attributes used to make the digit decision
§ Pixels: (6,8)=ON
§ Shape Patterns: NumComponents, AspectRatio, NumLoops
§ …
§ Features are increasingly induced rather than crafted

0

1

2

1

??



Recap: Naïve Bayes Model

§ Random variables in this Bayes net:
§ Y = The label
§ F1, F2, …, Fn = The n features

§ Probability tables in this Bayes net:
§ P(Y) = Probability of each label occurring, given no information about 

the features. Sometimes called the prior.
§ P(Fi|Y) = One table per feature. Probability distribution over a feature, 

given the label.

Y

F1 FnF2



Recap: Naïve Bayes Model

§ To perform training:
§ Use the training dataset to estimate the probability tables.
§ Estimate P(Y) = how often does each label occur?
§ Estimate P(Fi|Y) = how does the label affect the feature?

§ To perform classification:
§ Instantiate all features. You know the input features, so they’re your 

evidence.
§ Query for P(Y|f1, f2, …, fn). Probability of label, given all the input features. 

Use an inference algorithm (e.g. variable elimination) to compute this.

Y

F1 FnF2



Recap: Naïve Bayes for Spam Filter

Y

F1 F2

Y: The label (spam or ham)

Y P(Y)

ham ?

spam ?

F1: A feature
(do I know the sender?)

F1 Y P(F1|Y)

yes ham ?

no ham ?

yes spam ?

no spam ?

F2: Another feature
(# of occurrences of FREE)

F2 Y P(F2|Y)

0 ham ?

1 ham ?

2 ham ?

0 spam ?

1 spam ?

2 spam ?

§ Step 1: Select a ML algorithm. We choose to model the problem with Naïve Bayes. 
§ Step 2: Choose features to use.



Example: Overfitting

§ Posteriors determined by relative probabilities (odds ratios):

south-west : inf
nation     : inf
morally    : inf
nicely     : inf
extent     : inf
seriously  : inf
...

What went wrong here?

screens    : inf
minute     : inf
guaranteed : inf
$205.00    : inf
delivery   : inf
signature  : inf
...



Example: Overfitting

2 wins!!



Laplace Smoothing

§ Laplace’s estimate:
§ Pretend you saw every outcome 

once more than you actually did

§ Can derive this estimate with 
Dirichlet priors (see cs281a)

r r b



Laplace Smoothing

§ Laplace’s estimate (extended):
§ Pretend you saw every outcome k extra times

§ What’s Laplace with k = 0?
§ k is the strength of the prior

§ Laplace for conditionals:
§ Smooth each condition independently:

r r b



Real Naïve Bayes: Smoothing

§ For real classification problems, smoothing is critical
§ New odds ratios:

helvetica : 11.4
seems     : 10.8
group     : 10.2
ago       :  8.4
areas     :  8.3
...

verdana : 28.8
Credit  : 28.4
ORDER   : 27.2
<FONT>  : 26.9
money   : 26.5
...

Do these make more sense?



Tuning



Training and Testing



Important Concepts
§ How do we check that we’re not overfitting during training?
§ Split training data into 3 different sets:

§ Training set
§ Held out set (more on this later)
§ Test set

§ Experimentation cycle
§ Learn parameters (e.g. model probabilities) on training set
§ Compute accuracy of test set
§ Very important: never “peek” at the test set!

§ Evaluation (many metrics possible, e.g. accuracy)
§ Accuracy: fraction of instances predicted correctly

§ Overfitting and generalization
§ Want a classifier which does well on test data
§ Overfitting: fitting the training data very closely, but not 

generalizing well
§ We’ll investigate overfitting and generalization formally in a few 

lectures

Training
Data

Held-Out
Data

Test
Data



Tuning on Held-Out Data

§ Now we’ve got two kinds of unknowns
§ Parameters: the probabilities P(X|Y), P(Y)
§ Hyperparameters: e.g. the amount / type of 

smoothing to do, k, a

§ What should we learn where?
§ Learn parameters from training data
§ Tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train 

and test on the held-out data
§ Choose the best value and do a final test on 

the test data



Linear Classifiers



Feature Vectors

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”



Some (Simplified) Biology

§ Very loose inspiration: human neurons



Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?



Weights

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Dot product            positive means the positive class (spam)

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

Do these weights make sense for spam classification?



§ A tuple like (2,3) can be interpreted two different ways:

§ A tuple with more elements like (2, 7, -3, 6) is a point or vector in higher-
dimensional space (hard to visualize)

Review: Vectors

A point on a coordinate grid

2

3

A vector in space. Notice we are 
not on a coordinate grid.

2

3



Review: Vectors

§ Definition of dot product:
§ a · b  =  ∑! 𝑎!𝑏!  =  |a| |b| cos(θ)
§ θ is the angle between the vectors a and b

§ Consequences of this definition:
§ Vectors closer together

= “similar” vectors
= smaller angle θ between vectors
= larger (more positive) dot product

§ If θ < 90°, then dot product is positive
§ If θ = 90°, then dot product is zero
§ If θ > 90°, then dot product is negative

θ

a · b large, positive

θ

a · b small, positive

θ

a · b zero

θ

a · b negative



Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Dot product            positive 
means the positive class



Decision Rules



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane (divides space into two sides)
§ One side corresponds to Y=+1, the other corresponds to Y=-1

§ In the example:
§ f · w > 0 when 4*free + 2*money > 0

f · w < 0 when 4*free + 2*money < 0
These equations correspond to two halves of the feature space

§ f · w = 0 when 4*free + 2*money = 0
This equation corresponds to the decision boundary (a line in 
2D, a hyperplane in higher dimensions)

free  :  4
money :  2

0 1
0

1

2

free

m
on

ey

+1 = SPAM

-1 = HAM



Weight Updates



Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector



Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



Learning: Binary Perceptron

§ Misclassification, Case I:
§ w · f > 0, so we predict +1
§ True class is -1
§ We want to modify w to w' such that dot product w' · f is lower
§ Update if we misclassify a true class -1 sample:  w' = w – f
§ Proof: w' · f = (w – f) · f = (w · f) – (f · f) = (w · f) – |f|2

Note that |f|2 is always positive
§ Misclassification, Case II:

§ w · f < 0, so we predict -1
§ True class is +1
§ We want to modify w to w' such that dot product w' · f is higher
§ Update if we misclassify a true class +1 sample:  w' = w + f
§ Proof: w' · f = (w + f) · f = (w · f) + (f · f) = (w · f) + |f|2

Note that |f|2 is always positive
§ Write update compactly as w' = w + y* · f, where y* = true class



Examples: Perceptron

§ Separable Case
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Examples: Perceptron
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Examples: Perceptron

§ Separable Case



Examples: Perceptron

§ Separable Case



Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong answer, 

raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1
win   : 0
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0  
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0 
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

“win the vote”

“win the election”

“win the game”



Properties of Perceptrons

§ Separability: true if some parameters get the training set 
perfectly correct

§ Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



Problems with the Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over time 

can help (averaged perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Improving the Perceptron



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1



How to get deterministic decisions?

§ Perceptron scoring:
§ If            positive à classifier says: 1.0 probability this is class +1
§ If             negative à classifier says: 0.0 probability this is class +1

§ Step function

§ z = output of perceptron
H(z) = probability the class is +1, according to the classifier

z = w · f(x)
z = w · f(x)
z = w · f(x)

0

1

H(z)

z



How to get probabilistic decisions?

§ Perceptron scoring:
§ If            very positive à probability of class +1 should approach 1.0
§ If             very negative à probability of class +1 should approach 0.0

§ Sigmoid function

§ z = output of perceptron
          = probability the class is +1, according to the classifier

z = w · f(x)
z = w · f(x)
z = w · f(x)

�(z) =
1

1 + e�z

�(z) =
1

1 + e�z



A 1D Example

definitely blue
 

(x negative)
definitely red

 

(x positive)

not sure
 

(x near 0)

where w is some weight constant (1D vector) we have to learn
(assume w is positive in this example)



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

§ How to make the scores into probabilities? 

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Best w? 

§ Recall maximum likelihood estimation: Choose the w value that 
maximizes the probability of the observed (training) data



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Softmax with Different Bases



Softmax and Sigmoid

§ Recall: Binary perceptron is a special case of multi-class perceptron
§ Multi-class: Compute                  for each class y, pick class with the highest activation
§ Binary case:

Let the weight vector of +1 be w (which we learn). 
Let the weight vector of -1 always be 0 (constant).

§ Binary classification as a multi-class problem:
Activation of negative class is always 0.
If w · f is positive, then activation of +1 (w · f) is higher than -1 (0).
If w · f is negative, then activation of -1 (0) is higher than +1 (w · f).

Softmax

with wred = 0 becomes:

Sigmoid



Next Lecture

§ Optimization

§ i.e., how do we solve:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)


