CS 188: Artificial Intelligence

Linear and Logistic Regression

Spring 2024

University of California, Berkeley

Classification with Feature Vectors

T f(x) y

YOUR NAME : SPAM
Do you want free printr MISSPELLED .
cartriges? Why pay more FROM FRIEND :

when you can get them L. +
ABSOLUTELY FREE! Just

Hello,

oD o

“2”

g

PIXEL-7,12 :
|:> PIXEL-7,13 :
NUM LOOPS : 1

Regression with Feature Vectors

Market rent:

CONST 1
Sq ft. : 40000
Dist. BART: 0.1
| D) 84000

[Office space at
2024 Shattuck Ave]

views : 2

Compatibility:

CONST :
PIXEL-7,12 :
[:::::t> PIXEL-7,13 : 8

OUTSIDE

= o

Linear ClassifieTS Regression

" |nputs are feature values
= Each feature has a weight

= Sum is theM\ prediction
hu _actiua#fOTTy, (z) = sz’ - fi(z) = w- f(z)

= |f the activatj

: f1 p—]
= Posi#fe, output +1 f, W2 | z %
egative, output -1 T,

Output h,,

Weights

Dot product w - f gives the prediction

w ' f(x1)

CONST : 5000 CONST : 1
Sq ft. 0.8 Sq ft. : 40000
Dist. BART: 100 Dist. BART: 0.1
offices : 300 # offices : 16
views : 1000 # views H

w ° f(x2)

CONST : 5000 CONST 1
Sq ft. 0.8 Sg ft. : 50000
Dist. BART: 100 Dist. BART: 0.2
offices : 300 # offices : 4
views : 1000 # views : 0

Which weight makes the least sense for predicting office rent?

Linear Regression

" |nputs are feature values
= Each feature has a weight
= Sum is the prediction

Either make sure hy(x) =) w; - fi(z) = w- f(z) +w,

one of the i

features is a w +
constant or add RN

this w to the 2l Y >
equation 1,

(equivalent)

Linear Regression with 2d Feature Vector

o)
. 3
o8
8 3
(o} o © 2
1Y 9 &® % e °
o —© -
6 00 0o °oo o) 1 %
Qoo (o) § 0% |® -3
o © o 00(90 o o) 'g
o, O o
2 (o] 20008%9 Oo
e - —1
o o 0.0
0 o 0042)
0.6
0.8 x1
x2 '

Code credit: Claude3

Review: Vectors

= A tuple like (2,3) can be interpreted two different ways:

3+ ®
2
A point on a coordinate grid A vector in space. Notice we are

not on a coordinate grid.

= A tuple with more elements like (2, 7, -3, 6) is a point or vector in higher-
dimensional space (hard to visualize)

Review: Vectors

= Definition of dot product:
" a-b=2a b= |a| |b| cos(0)

= O is the angle between the vectorsaand b

= Consequences of this definition:

Vectors closer together

= “similar” vectors

= smaller angle B8 between vectors
= larger (more positive) dot product

If 6 <90°, then dot product is positive
If 6 =90°, then dot product is zero
If 6 >90°, then dot product is negative

a - b large, positive

S

a-bzero

S

a - b small, positive

0

a - b negative

Weights

CONST : 5000
Sqg ft. 0.8
Dist. BART: 100 CONST : 1
offices : 300 Sq ft. : 40000
views : 1000 w Dist. BART: 0.1
f(ajl) # offices : 16
views H
CONST : 1
f(CCQ) sq ft. : 50000
] o Dist. BART: 0.2
Dot product w - f is the prediction 4 offices : 4

views : 0

How far does f go in the w direction?

Linear Regression with 2d Feature Vector

o
3
o8
8 ° 5
(o} o [e) 2
ado o =
P O O o0 So
6) 00 . [o) Oo o)
OOO (o] O fo) QJ 00 1
Q 0o <)%P -~ °
o] (o] & (o) (0]
Yy 4 ? o (o] o Lo
o) o o
5 0 20006’%9 0°
. -1
o e 0.0
0 o 0.2 >
_Q 0064
O.é x1
X2 '

w points in direction where best-fit plane is steepest

Residuals

Code credit: Claude3

How to find the weights?

known known

Y1
2

different values
of same feature

unknown

How to find the weights?

) _data point Y))
Y (1« - xf Wo
V2 1 xf -+ X W1
y — . , X — » . . , w — .
 Vn | _1 xllv T xrly_ Whn |

What does matrix product Xw look like? Vector like w and y

What is the entry in the first row and

. Wo + WiXq' + .+ WX,
first (and only) column of Xw? 0 T non

We want Xw to look like y

Linear Regression

" |nputs are feature values
= Each feature has a weight
= Sum is the prediction

ho(2) = Y w; - fi(2) = w- ()

f, WZ:Z—»

Premise of linear regression

) _data point Y))
! (1« - xf Wo
V2 1 xf -+ X W1
y — . , X — » . . , w — .
 Vn | _1 xllv T xrly_ Whn |

For a proposed weight vector w, its badness is | Xw — y|? | 2

lv| is the length of the vector; |v[? = Z. v2 = vTv
Loss

So bagpesstw) = 5 (, (X)W - V)2 / 2

Solving for w

e
w;l Find argmin,, |Xw — y|?/2
wn
1 7
Vwi(y_xw) (y—Xw) =0

1

=Vw 5 (yTy —y' Xw—w/'X"y+ WTXTXW)

_ data point.
)1
Y2
s X=
| Vn |
1

(y'y —2w X"y + w'X'Xw) = - X"y + X" Xw

If you ever actually need to
do this sort of stuff:

w=(X"X)" X"y

https://cs.nyu.edu/~roweis/
notes/matrixid.pdf

Back to Classification: Improving the Perceptron

Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

training

test
held-out

iterations

Overtraining: test / held-out
accuracy usually rises, then falls
= Qvertraining is a kind of overfitting

accuracy

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

5 0.9 | 0.1

Perceptrons give deterministic decisions

Perceptron scoring: 2 = w - f(x)
If z=w - f(x) positive 2 classifier says: 1.0 probability this is class +1
If z=w- f(x) negative = classifier says: 0.0 probability this is class +1

H
Step function 2

14
1 z2>0
H(z){o 2 <0

0
z = output of perceptron

H(z) = probability the class is +1, according to the classifier

How to get probabilistic decisions?

Perceptron scoring: z = w - f(x)
If z=w- f(x) very positive = probability of class +1 should approach 1.0
If z=w- f(x) very negative = probability of class +1 should approach 0.0

Sigmoid function 6 = T /' |
z p—

z = output of perceptron

gb(z) = probability the class is +1, according to the classifier

Probabilistic Decisions: Example

1 where w is some weight constant (vector) we have to learn,
1+ e wr and wx is the dot product of w and x

= Supposew =[-3,4, 2] and x=[1, 2, 0]
= What label will be selected if we classify deterministically?
= wx=—-3+8+0=5
= 5is positive, so the classifier guesses the positive label
= What are the probabilities of each label if we classify probabilistically?
= 1/(1+e™)=0.9933 probability of positive label
= 1-0.9933 =0.0067 probability of negative label

A 1D Example

P(red]m) — 1 where w is some weight constant (1D vector) we have to learn
14 e-wz
P(red|x)
almost 1.0
almost 0.0
\ J \ J \ J L
1 1 I
definitely blue not sure definitely red

(x negative) (x near 0) (x positive)

Where does the sigmoid function come from?

= Suppose we have two hypotheses:
= A: P(heads) =2/3
= B: P(heads)=1/3
= Each heads we see is a “bit” or factor of 2 of evidence for Hypothesis A

= Each tails we see is a “bit” of evidence for B

1.0} 4
= |f we have n more heads than tails: 6 = oo
= Ais 2" times more likely than B
= 05l 4

= P(A)=2"/(1+2") o
= =1/(1+2M)
= .. but we like e better than 2 0.0

Best w?

= Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Likelihood = P(training data|w)
= H P(training datapoint 7 | w)

— H P(point 2V has label 3V |w)
= [[P12 w)

Log Likelihood = Z log P(yW 2D w)

Best w?

= Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

P(point 29 has label y = +1 | w) P(point 29 has label y'¥ = —1 | w)
= Py = 41|20 w) = Py =-1]2"w)
1 _q 1

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

. . 1
. (2) — (4).) —
with: P(y +1]zt; w) 1 4+ e—w f(z®)

1

Py = —1esw) =1 - - apE=——Teay

That’s Logistic Regression Loss(w) = -log likelihood(w)

Logistic Regression Example

= What function are we trying to maximize for this training data?

= Data point [2, 1] is class +1
+

= Data point [0, —2] is class +1

= Data point [-1, —1] is class -1 b

max [l(w) = max ZlogP(y(i)]x(i);w)

w

i i 1
P(y() — +1|£U(),’LU) = 1+ e_w,f(x(z'))

1
1+ e-w ")

Py = -1z w) =1 —

Logistic Regression Example

= What function are we trying to maximize for this training data?

= Data point [2, 1] is class +1
+

= Data point [0, —2] is class +1

= Data point [-1, —1] is class -1 b

argmax [log : log : log (1 :
dlolzlll‘ldx 0g 1 —|—€_(2“’1+““2) + 08 1_1_6_(_2“'2) T 05 B 1+ 6—(_“'1—11"2)

Separable Case: Deterministic Decision — Many Options

Sr 5 -
a5k
451 45
4t
i 4 + +
35|
as| .5
3k
3F 3 -
25|
as| -
2k
2k
2
15} O O
15 F 15k
1k
1k
;
05t O O
as| 05
0
0 0

Separable Case: Probabilistic Decision — Clear Preference

InN]
P T LI T LI T LI T LI T 1
o I o -t wa ~ o () o = (4] a
T T T T T T T T T 1

Multiclass Logistic Regression

wi - f biggest
= Recall Perceptron: w1
= A weight vector for each class: UJy
= Score (activation) of a class y: Wy - f(a:) w3
w2
" Prediction highest score wins ~ y = arg max wy - f(x) wo - f wg - f
Yy biggest biggest
= How to make the scores into probabilities?
Z Z Z
e~! e~? e~s

Z1,R2,R3 —7 .) 9

€*l 1 e*2 f-e*3 e*l +e*2 4 e* e*l - e*2 + e*3

\ J \ J
1 V

original activations softmax activations

Multi-Class Probabilistic Decisions: Example

21 Z2 zZ3

e e e
e*1 + e*2 4 %8 e#1 + e¥2 4 %8 %1 + e¥2 + 73

21422y %3 >

= Suppose w, =[-3,4,2],w,=[2,2,7],w;=[0,-1,0],and x =[1, 2, 0]
= What label will be selected if we classify deterministically?
" wy;-x=5,and w,x =6, and wy-x =-2
= w,-x has the highest score, so the classifier guesses class 2
= What are the probabilities of each label if we classify probabilistically?
= Probability of class 1: e> / (e> + e® + e72) = 0.2689
» Probability of class 2: e®/ (e + e® + e72) = 0.7310
» Probability of class 3: e72 /(e + e® + e72) = 0.0002

Best w?

= Recall maximum likelihood estimation: Choose the w value that
maximizes the probability of the observed (training) data

Likelihood = P(training data|w)
= H P(training datapoint 7 | w)

— H P(point 2V has label 3V |w)
= [[P12 w)

Log Likelihood = Z log P(yW 2D w)

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

= Multi-Class Logistic Regression

Multi-Class Logistic Regression Example

= What function are we trying to maximize for this training data?

= Data point
= Data point
= Data point

2, 1] is class Red

—1, —1] is class Blue

w

P(y" |z w)

0, —2] is class Green

max [[(w) = max ZlogP(y(i)\x(i);w)

oWy () fz®)

B >, evu)

Multi-Class Logistic Regression Example

= What function are we trying to maximize for this training data?

= Data point [2, 1] is class Red
o
= Data point [0, —2] is class Green
L , o
= Data point [-1, —1] is class Blue .
[log (e2w1twa) | Log probability of [2, 1] being red
6211']—{-11'2 _'_62'11)1—%'11:2 +€2 +
, —2 Log probability of [0,-2] being green
argqlunax + log <6_2“,2+2_2“,2 —=) gp
e~ W1 w2 Log probability of [-1, —1] being blue
i + log (e—u'] — w9 _i_e—'w-l — w9 +€— —) |

Softmax with Different Bases

P(red|x) o5Wred

A

edWred'T | edWblue'T

6100wred T

eIOOwred T 4 8100wblue -

«——— looks like max, wy, - =

e'wred T

eWred'T | eWblue T

2000 ¢ O

ewred T

P(red|x) =

ewred T + ewblue X

Softmax and Sigmoid

" Binary perceptron is a special case of multi-class perceptron
= Multi-class: Compute wy - f(z) for each class y, pick class with the highest activation

= Binary case:
Let the weight vector of +1 be w (which we learn).
Let the weight vector of -1 always be 0 (constant).

= Binary classification as a multi-class problem:
Activation of negative class is always O.
If w - fis positive, then activation of +1 (w - f) is higher than -1 (0).
If w - f is negative, then activation of -1 (0) is higher than +1 (w - f).

Softmax Sigmoid
ewred’x . 1
with W,eq = 0 becomes: P(red|z) =
ed —wx
eWred T _|_ eWblue 'L 1 —l_ €

P(red|x) =

Next Up

= Optimization

= j.e., how do we solve:

w

max [l(w) = max ZlogP(y(i)m(i);w)

CS 188: Artificial Intelligence

Optimization

Spring 2024 --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Review: Derivatives and Gradients

= What is the derivative of the function g(z) = z° + 3?
dg
=

= What is the derivative of g(x) at x=57?
dg
dx

27

lo—5 = 10

Review: Derivatives and Gradients

= What is the gradient of the function g(z,y) = %y ?

= Recall: Gradient is a vector of partial derivatives with respect to
each variable

— ﬁ — — —

e 2y
vg: p—
of 2
L By R

= What is the derivative of g(x, y) at x=0.5, y=0.57

ib-onv-ns = | 057 | = | o |

Hill Climbing

= Recall from local search: simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What's particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization

= Could evaluate g(wo+ h) and g(wo — h)

= Then step in best direction

dg(wo)

. - . g(wg + h) — g(wo — h)
= Or, evaluate derivative: 9 o 2h

= Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: g(wy,ws)

= Updates: = Updates in vector notation:

99
wlel‘F@*@—wl(wl,wQ) w4 w~+ a*x Vyg(w)

dg

wWo — Wo + a ¥ —— (wy, W) with: V,g(w) = [%@gl (w)] = gradient

8102

Gradient Ascent

= |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?*

max w+ A
A:A2+A2<e 9l)

First-Order Taylor Expansion:

Steepest Descent Direction:

: max A'a
Note: AlA]<e -
Vg

Hence, solution: A=c¢
Vgl

dg dg
w+A) ~ — A + A
g() ~ g(w) + 90 M T g2
dg dg
A:A?fi(gga glw) + 3w1A1+3w2A2
a
A=ec—r
|all
. 89
Gradient direction = steepest direction Vg = 85131
8w2

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

= init

= for iter =1, 2, ..

w < w+ a*x Vg(w)

" «: learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes W about0.1-1%

What was the point again?

= We want to set w to maximize the log likelihood that logistic
regression assigns to the data

max [l(w) = max ZlogP(y(i)\x(i);w)

P(y() — —I—Hx(); W) = |+ o—w f(z0)

1
1 + e—w f(z®)

with: | |
p(y(Z) — _1‘x(2);w) —1—

So we (repeatedly) calculate V, ll(w) and then use that do gradient ascent

Batch Gradient Ascent on the Log Likelihood Objective

max [[(w) = max ZlogP(y(i)]x(“;w)

w

\ J

g(w)

= init W

= for iter =1, 2, ..

W — W+ « * Z Vlog P(y'W |2V w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y(i)]x(“;w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init w
= for iter =1, 2,

" pick random j

W 4 W+ o * VlogP(y<j)]a;(j);w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y(i)]x(“;w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

= init w
= for iter =1, 2,
" pick random subset of training examples J

W — W+ a* ZVlogP(y(j)\x(j);w)
JjeJ

