Review: Logistic Regression

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)
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Review: Multi-Class Logistic Regression

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)
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Suppose ylil =3 ...



What's still needed

= Optimization

= j.e., how do we solve:

w

max [l(w) = max ZlogP(y(i)m(i);w)
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Review: Derivatives and Gradients

= What is the derivative of the function g(z) = z° + 3?
dg
=

= What is the derivative of g(x) at x=57?
dg
dx
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Review: Derivatives and Gradients

= What is the gradient of the function g(z,y) = %y ?

= Recall: Gradient is a vector of partial derivatives with respect to
each variable
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= What is the derivative of g(x, y) at x=0.5, y=0.57

ib-onv-ns = | 057 | = | o |



Hill Climbing

= Recall from local search: simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What's particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?




1-D Optimization

= Could evaluate g(wo+ h) and g(wo — h)

= Then step in best direction

dg(wo)

. - . g(wg + h) — g(wo — h)
= Or, evaluate derivative: 9 o 2h

= Tells which direction to step into



2-D Optimization

Source: offconvex.org



Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: g(wy,ws)

= Updates: = Updates in vector notation:

99
wlel‘F@*@—wl(wl,wQ) w4 w~+ a*x Vyg(w)

dg

wWo — Wo + a ¥ —— (wy, W) with: V,g(w) = [%@gl (w)] = gradient

8102



Gradient Ascent

= |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks



Gradient in n dimensions




Optimization Procedure: Gradient Ascent

= init

= for iter =1, 2, ..

w < w+ a*x Vg(w)

" «: learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes W about0.1-1%



How about computing all the derivatives?

= We'll talk about that once we covered neural networks, which
are a generalization of logistic regression



Neural Network Architectures
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Manual Feature Design vs. Deep Learning

o Manual feature design requires:
o Domain-specific expertise
o Domain-specific effort

o What if we could learn the features, too?
o Deep Learning




Review: Perceptron

1 wixry + woxsy + wyxrs > 0
Y= :
0 otherwise



Review: Perceptron with Sigmoid Activation

X, =2—>14—>y

Yy = ¢(wrry + wors + w3x3)
1
o 1 _I_ (_3—("11,’1.’1_?1 —f—’UJQ.’IJQ +"U)3.’IJ3)




2-Layer, 2-Neuron Neural Network

2




2-Layer, 2-Neuron Neural Network

== intermediate output h,

) D g B =
3 »714/

intermediate output h; = qb(-wlla: 1+ Wo1To + "11__,731;1?3)
1
o 1 _I_ c—('ll)llfl_il+'U)21.’I_52+'U)31.’I;3)




2-Layer, 2-Neuron Neural Network

2 =P intermediate output h;

TEET—
D g B =

=P intermediate output h,

intermediate output hy = qb(-u,rlgfr: 1+ W99y + '11,.-’32:1?3)

1
1 + e (11)12 T1+wWooTat+wW32x3 )




2-Layer, 2-Neuron Neural Network

=P intermediate output h,

2

/
—>7T£>
2 =P intermediate output h,

Y = qb(*w 1hi + "u,rghz)
1
1 + (_3—('11..’1]'1,1 —|—'l1,.!2]‘),2)




2-Layer, 2-Neuron Neural Network

2 =P intermediate output h;

I g B = 2
/
2 _>7T£>—> intermediate output h,

Y = Qb(’u»"lh'l -+ "U,’Qh‘Z)

= p(w1p(w111 + w2122 + W3123) + Wad(W1221 + Wa2T2 + W3273))



2-Layer, 2-Neuron Neural Network

y = ¢(wrhy + wahs)
=

(w1p(wr1T1 + wai1s + W3123) + wWod(wWi2x1 + Wa2xs + W3213))

The same equation, formatted with matrices:

Wy, Wio
O [:1:'1 T :1:3} wo1 W92
w31 w32

= ¢ ([ W11 + W21T2 + W31T3 W12 + W22T2 + W32X3 })
= [ hy he }

¢ ([ hy D } [ Z:; ]) = ¢ (wrhy +waho) =y

The same equation, formatted more compactly by introducing variables representing each matrix:

(,D(T X I""][-""rliiyel- 1) =h (DU L X "”"Ilayer 2) =Y



2-Layer, 2-Neuron Neural Network

O(x X Wiayer 1) = h

TN

Shape (1, 3). Shape (3, 2). Shape (1, 2).
Input feature vector. Weights to be learned.  Outputs of layer 1,
inputs to layer 2.

(D(l 1 X I"‘I’rla_y(.él' 2) =Y

TN

Shape (1, 2). Shape (2, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned.  Output of network.
inputs to layer 2.



2-Layer, 3-Neuron Neural Network




2-Layer, 3-Neuron Neural Network

W3
D il g i =

W3

’V w11 W12 W13 —‘
(,9 [ 1T To I3 } Wo1 Wao2 W23
L w3y W32 W33 J

(,9 ([ W11 + WL + W31T3 Wi12T1 + WXy + W32XL3 W13L] + W23To + W33T3 ])
[ hl hQ ]23 ]

w1 —‘
0 [ hi hs hs ] { Wo = ¢ (wihy + waho + wszhsz) =y
w3 J



2-Layer, 3-Neuron Neural Network

O(x X Wiayer 1) = h

TN

Shape (1, 3). Shape (3, 3). Shape (1, 3).
Input feature vector. Weights to be learned  Outputs of layer 1,
inputs to layer 2.

(D(l 1 X I"‘I’rla_y(.él' 2) =Y

7N

Shape (1, 3). Shape (3, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned.  Output of network.
inputs to layer 2.



Generalize: Number of hidden neurons

Wan z |

The hidden layer could have any arbitrary number n neurons.



Generalize: Number of hidden neurons

O(x X Wiayer 1) = h

TN

Shape (1, 3). Shape (3, n). Shape (1, n).
Input feature vector. Weights to be learned Outputs of layer 1,
inputs to layer 2.

(D(l 1 X I"‘I’rla_y(.él' 2) =Y

RN

Shape (1, n). Shape (n, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned.  Output of network.
inputs to layer 2.

The hidden layer could have any arbitrary number n neurons.



Generalize: Number of input features

A,
X1 W21 2
W3
W1
X
2 Wdim(x)

Xdim(x)
> ™

W im(x)n

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.



Generalize: Number of input features

O(x X Wiayer 1) = h

TN

Shape (1, dim(x)). Shape (dim(x), n). Shape (1, n).
Input feature vector. Weights to be learned  Outputs of layer 1,
inputs to layer 2.

(D(l 1 X I"‘I’rla_y(.él' 2) =Y

RN

Shape (1, n). Shape (n, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned.  Output of network.
inputs to layer 2.

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.



Generalize: Number of outputs

A,
X1 W21 2
W3 —)
X2 W 2 I% ; Y1
dim(x
X3
Win
W;
2 —>71‘£>_> Ydim(y)
w
Xdim(x) 3N
)
W im(x)n

The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.



Generalize: Number of outputs

O(x X Wiayer 1) = h

TN

Shape (1, dim(x)). Shape (dim(x), n). Shape (1, n).
Input feature vector. Weights to be learned  Outputs of layer 1,
inputs to layer 2.

(D(l 1 X I"‘I’rla_y(.él' 2) =Y

N

Shape (1, n). Shape (n, dim(y)). Shape (1, dim(y)).

Outputs of layer 1, Weights to be learned.  Output of network.
inputs to layer 2.

The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.



Generalized 2-Layer Neural Network

QD(:I: X ‘Jl.ﬁlfi}’(31' 1) — h Layer 1 has weight matrix with shape (dim(x), n).

These are the weights for n neurons, each taking
dim(x) features as input.

Shape (1, dim(x)). Shape (dim(x), n). Shape (1, n).
Input feature vector. Weights to be learned  Outputs of layer 1,
inputs to layer 2.

This transforms a dim(x)-dimensional input
vector into an n-dimensional output vector.

(D(l L X IIldytl 2) =Y
Layer 2 has weight matrix with shape (n, dim(y)).

These are the weights for dim(y) neurons, each
taking n features as input.

Shape (1, n). Shape (n, dim(y)). Shape (1, dim(y)). This transforms an n-dimensional input vector

Outputsoflayer1,  weights to be learned. ~ Output of network. into a dim(y)-dimensional output vector.
inputs to layer 2.

The shape of a weight matrix is determined by the dimensions of the input and output of that layer.



3-Layer, 3-Neuron Neural Network




3-Layer, 3-Neuron Neural Network

Layer 1:
» x has shape (1, 3). Input vector, 3-dimensional.

"  Wiayer1 has shape (3, 3). Weights for 3 neurons, each taking in
a 3-dimensional input vector.

" hijapera has shape (1, 3). Outputs of the 3 neurons at this layer.
Layer 2:

" hijaper1 has shape (1, 3). Outputs of the 3 neurons from the
previous layer.

"  Wiayer has shape (3, 3). Weights for 3 new neurons, each
taking in the 3 previous perceptron outputs.

" hjayer2 has shape (1, 3). Outputs of the 3 new neurons at this
layer.
Layer 3:
hiayer 2 has shape (1, 3). Outputs from the previous layer.

Wiayer 3 has shape (3, 1). Weights for 1 final neuron, taking in
the 3 previous perceptron outputs.

» vy hasshape (1, 1). Output of the final neuron.

v

o 24

¢($ X Wlaycr 1) — hlaycr 1
¢(hlaly01" 1 X Wlaycr 2) — hlayer 2
¢(hlzmy01‘ 2 X Wlayor 3) =Y



Generalized 3-Layer Neural Network

Layer 1:
» xhas shape (1, dim(x))
" Wiayer1 has shape (dim(x), dim(L1))
hiayer 1 has shape (1, dim(L1))

»y

A 4

Layer 2:

hiayer1 has shape (1, dim(L1))
" Wiayer has shape (dim(L1), dim(L2))
hiayer 2 has shape (1, dim(L2))

Layer 3:
" hjayer2 has shape (1, dim(L2))
" Wiayer3 has shape (dim(L2), dim(y))
" yhasshape (1, dim(y)) ¢<CI X Wlayer 1) — hflaycr 1

d)(hlaycr 1 X Wlaycr 2) — hlaycr 2
¢<}Lla1yol‘ 2 X Wlayor 3) =Y




Multi-Layer Neural Network

Note: Sometimes we
don’t apply the non-
linear function in the
last layer.




Multi-Layer Neural Network

" |nput to alayer: some dim(x)-dimensional input vector

= Qutput of a layer: some dim(y)-dimensional output vector
= dim(y) is the number of neurons in the layer (1 output per neuron)

= Process of converting input to output:

= Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.
The result has shape (1, dim(y)).

= Apply some non-linear function (e.g. sigmoid) to the result.
The result still has shape (1, dim(y)).

= Big idea: Chain layers together
= The input could come from a previous layer’s output
= The output could be used as the input to the next layer



Deep Neural Network
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g = nonlinear activation function



Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 : v - 1 ; i 5
olz) 92) | o) |
0.8} 9'2) | 0.5} g@ /| | 4| g@ | 1
0.6} - 31
0
04} 4 2}
il | -05 | - 'l
0 : -1 . 0 .
5 0 5 -5 0 5 -5 0 5
1 e~~~ =%
= — = z)=max (0, z
g(z) T g(z) T oz g(z) (0,z)
1 z>0
’ _ e ! e o 2 / — ’
g'(z)= g(2)(1-g(2) g'(z)=1-4(2) g (z) {0, SiliaTinse

[source: MIT 6.5191 introtodeeplearning.com]



Same basic idea

Dependance of P on w is much more elaborate

<

max ll(w) — max Z lOg P(y(@) ’ZE(Z), ’UJ) (set of all parameters

often written as 6 not w)
) J

many arrays of parameters, not just a vector



“Batched” Computation

Wi1

2

=P intermediate output hy,

_t

=P intermediate output h,,;

=P intermediate output h,,

\

/

=P intermediate output h,,




“Batched” Computation

== intermediate output hy;
x

/\A’2
[

>p- intermediate output h,;

= intermediate output hy,
r\

W3

= intermediate output h,,

Yy — @ ll’lhll + 112/712)

i
i
Yo = o(
i

= (w1 P(w11T21 + W Ty + W31 To3) + WaP(W12To) + WarTos + W32T03))

- ( w 1()(11’11 11 + Wo1T 192 + w 31T 1;) BE "ll,.’gqb(‘ll,.’lz;lfll e W99 19 —— ‘U,.v‘32.'1?13))

(7 1/721 + 112/722)

We’re not changing the architecture; we’re just running the 2-neuron, 2-layer network twice to classify 2 inputs.



“Batched” Computation

y1 = ¢(wihyy + wahyo)
= (w1 p(wr111 + worx12 + w31713) + Wod(wWi2x11 + W12 + W32x13))
Yo = O(wihay + wahas)

= Q "Il)l(_,"l)('ll,v‘ll.'lffZl T Wo1T99 -+ '11_,-’31.'1323) -+ "ll,qub('ll.,’1251721 — Wo9oT99 - 'U»‘32;1.723))

Rewriting in matrix form:

w11 wi9 —|

11 T91 I31 [ , ,
Wwo1 w99 J

12 T2 TI32 [

-2
o~

w31 w39

W11 + W12 + W31T31 W21 + W2l + W32T3
W11T12 + Wo1Too + W31 T32  W12X12 + We2loo + W32T 39

-

hiv ho
his  hoo

h-'ll /7,21 un un h,-“ + "IU2/7,21 o (75
/7..12 /?,22 wo "11,71/7,-12 + "IU2/?,22 Y2



“Batched” Computation

O(x X Wiayer 1) = h

TN

Shape (batch, dim(x)). Shape (dim(x), n). Shape (batch, n).
Input feature vector. Weights to be learned  Outputs of layer 1,
inputs to layer 2.

(D(} 1 X “""ﬁrlay(:1‘ 2) =Y

N

Shape (batch, n).  shape (n, dim(y)). Shape (batch, dim(y)).

Outputs of layer 1, weights to be learned.  Output of network.
inputs to layer 2.

Big idea: We can “stack” inputs together to classify multiple inputs at once. The result is multiple outputs “stacked” together.



Multi-Layer Network, with Batches

= |nput to a layer: batch different dim(x)-dimensional input vectors

= Qutput of a layer: batch different dim(y)-dimensional output vectors
= dim(y) is the number of neurons in the layer (1 output per neuron)

= Process of converting input to output:

= Multiply the (batch, dim(x)) input matrix with a (dim(x), dim(y)) weight vector.
The result has shape (batch, dim(y)).

= Apply some non-linear function (e.g. sigmoid) to the result.
The result still has shape (batch, dim(y)).

= Big idea: Stack inputs/outputs to batch them

= The multiplication by weights and non-linear function will be applied to each row
(data point in the batch) separately.

= Efficiently parallelized on a GPU



Training Neural Networks

[Pl -




Training Neural Networks

= Step 1: For each input in the training (sub)set x, predict a classification y
using the current weights

O(x X Wiayer 1) = h O(h X Wiayer 2) =Y
= Step 2: Compare predictions with the true y values, using a loss function
= Higher value of loss function = bad model
= Lower value of loss function = good model
= Example: zero-one loss: count the number of misclassified inputs
= Example: log loss (derived from maximum likelihood; more on this soon)
= Example: sum of squared errors (if you're solving a regression problem)
= Step 3: Use numerical method (e.g. gradient descent) to minimize loss

= Loss is a function of the weights. Optimization goal: find weights that minimize loss



Log Loss Function

= Recall: loss function is a measure of how far off our model is
= Higher value of loss function = bad model

= Lower value of loss function = good model

= Log loss function for binary classification:
Log Loss = — Y _yilog(ps) + (1 — i) log(1 — p;)

= y. = The true class of the jith data point in the training dataset (either O or 1)

= p;, = The probability of positive class, predicted by our classifier

= Each data point contributes some loss. The total loss is the sum over all data points.
= Note: Log loss is a function of the weights

= Changing the weights changes the predictions p,. The y, do not change.



Log Loss Function

= Log loss function for a single data point: —ylog(p) — (1 —y)log(1 —p)

= Casel: Trueclassisy=1
» Log loss function becomes just —log(p)

= |f classifier gives p near O:
The model was confident in guessing y=0
Bad model = high loss value

= |f classifier gives p near 1:
The model was confident in guessing y=1
Good model = low loss value




Log Loss Function

= Log loss function for a single data point: —ylog(p) — (1 —y)log(1 —p)

= Casell: Trueclassisy=0
= Log loss function becomes just —log(1-p)

= |f classifier gives p near O:
The model was confident in guessing y=0
Good model = low loss value

= |f classifier gives p near 1:
The model was confident in guessing y=1
Bad model = high loss value

= Note: This equation uses y=0, not y=-1,
for the negative class




Log Loss Example

Log Loss = — Zyz log(pi) + (1 —y;)log(1 — p;)

Data point 1: True class y=1. We predicted p=0.1 probability it’s the positive class.
= |ntuitively: Our guess is bad. We should have guessed closer to p=1.
= This contributes —log(0.1) = 1 to the loss function.

Data point 2: True class y=0. We predicted p=0 probability it’s the positive class.
= Intuitively: Our guess was perfect. We were certain it was y=0.
» This contributes —log(1.0) = 0 to our loss function.

Data point 3: True class y=1. We predicted 0.8 probability it’s the positive class.
= |ntuitively: Our guess was pretty good, but not perfect.
» This contributes —log(0.8) = 0.1 to the loss function.

Totalloss: 1+0+0.1=1.1
» Goal: Find the weights that lead to the probabilities that minimize this loss function



Optimization Procedure: Gradient Descent

" init W

= for iter =1, 2, ..
w <— w — aV©Log Loss(w)
where

Log Loss = — Zyi log(p;) + (1 — y;) log(1 — p;)

and Pi is computed by running the network on input x; and weights w

" «:learning rate --- tweaking parameter that needs to be
chosen carefully




Computing Gradients

How do we compute gradients of these loss functions?

= Repeated application of the chain rule:

Then f'(z) = g'(h(z))W ()

- Derivatives can be computed by following well-defined procedures



Automatic Differentiation

= Automatic differentiation software
= e.g. Theano, TensorFlow, PyTorch, Chainer
= Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

= This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

= Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
"= How this is done? -- outside of scope of CS188



Backpropagation™

Gradient of g(w1, w2, w3) = ’wile +Ows3 at wy; =2, w,=3, wy=2

Think of g as a composition of many functions
= Then, we can use the chain rule to compute the gradient

g=b+c W1W1:2/1\;\a:16
o9 _ %9 _. _/
Ob " Oc

b=axw,

dg 09 _ . dg _

Oa 0b Oa 8w2

a=w,*

0 dg Oa

a—iza—za—mz?,-zlw%:%

c=5w,

9 090y

dwz ~ dc dws
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PyTorch is Amazing

1 import torch

1 # Create tensors

2 x = torch.tensor(2.0, requires_grad=True)

3y = torch.tensor (3.0, requires_grad=True)

4

5 # Perform operations

6z =X*%Yy + Xkk2

7

8 # Compute gradients

9 z.backward()

10

11 # Print gradients

12 print("Gradient of z with respect to x:", x.grad)
13 print("Gradient of z with respect to y:", y.grad)

Gradient of z with respect to x: tensor(7.)
Gradient of z with respect to y: tensor(2.)



v
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PyTorch is Amazing

1x =

2y = torch.tensor([4., 3., 2.,

3 M = torch.tensor([[2., 0., 0.

4 1. 2., 0.

5 [0., 0., 2.

6 [1., 0., 6.
v

9

10 z.backward()

11 print("Gradient
12 print("Gradient
13 print("Gradient

[2 Gradient of z with

Gradient of z with
Gradient of z with

p— p— p—
(SIS

.1111,

7 M_inv = torch.linalg.inv(M)
8z=y@ (M_inv @ x) # *°

= torch.tensor([1., 2., 3., 4.], requires_grad=True)
4

.1

requires_grad=True)

.11, requires_grad=True)

@'' means matrix multiplication

of z with respect to x:", x.grad)

of z with respect to y:

, y.grad)

of z with respect to M:", M.grad)

respect
respect
respect

.0000, -2.0000,
6667, —1.3333,

0.2222,

to x: tensor([ 1.3333, 1.5000, 1.0000, -0.1667])
to y: tensor([-0.6667, 1.3333, 1.5000, 2.3333])
to M: tensor([[ 0.8889, -1.7778, -2.0000, -3.1111],
-2.2500, -3.50001],
-1.5000, -2.3333],

0.2500, ©.3889]1])



Gradient Ascent on the Log Likelihood Objective

max [l(w) = max ZlogP(y(i)]x(“;w)

w

\ J

g(w)

= init W

= for iter =1, 2, ..

W — W+ « * VZ log P(y ]2 w)




Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y(i)]x(@;w)

\ J

f(x) = g(x) + h(x)
g(w)
df/dx = d(g + h)/dx = dg/dx + dh/dx
"= jnit W
= for iter =1, 2, ..

W — W+ « * ZVlog Py |z w)




Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y(i)]x(“;w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init w
= for iter =1, 2,

" pick random j

W 4 W+ o * VlogP(y<j)]a;(j);w)




Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y(i)]x(“;w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

= init w
= for iter =1, 2,
" pick random subset of training examples J

W — W+ a* ZVlogP(y(j)\x(j);w)
JjeJ




Problem with High Learning Rate

KEEP

CALM

AND LOWER YOUR

' LEARNING !

Source: offconvex.org



Properties of Neural Networks
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Neural Networks Properties

* Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

" Practical considerations
= Can be seen as learning the features
= Large number of neurons

= Danger for overfitting
= (hence early stopping!)



Universal Function Approximation Theorem*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,
for any finite measure p, standard multilayer feedforward networks can approximate any
function in LP(u) (the space of all functions on R* such that [g« |f(z)[Pdpu(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

" |n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”
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Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot
Abstract. In this paper we demonstrate that finite linear combinations of com-
i f a fixed, univaris ion and a set of i uniformly

approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well i by conti neural networks with
onlyasinglei hidden la y i incarity. The
paper discusses approximation properties of other possible types of nonlincarities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse areas are d with the ion of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N

Y. qo(y]x + 6), [0)]
=

where y; € R" and ;, 6 € Raare fixed. (y" is the transpose of y so that y'x is the inner

product of y and x.) Here the univariate function o depends heavily on the context

of the application. Our major concern is with so-called sigmoidal o’s:

© 1 as t— +oo,
-
° 0 as t——o0.

Such_functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if ¢ is any continuous sigmoidal

* Date received: October 21, 1988. Date revised: February 17, 1989. This rescarch was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FG02-
8SER25001.
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Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect 10 L) per-
formance critria, for arbitrary finite input environment measures i, provided only that sufficiently many hidden
units are available. If the activation function is continuous. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation 1o a function and
its derivatives

Keywords—Multilayer feedforward networks. Activation function, Universal approximation capabilities. Input

measure, L . Uniform

obolev spaces, Smooth

1. INTRODUCTION

The approximation capabilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989). Gallant and White
(1988). Hecht-Nielsen (1989), Hornik, Stinchcombe,
and White (1989, 1990). Iric and Miyake (1988)
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

1f we think of the network architecture as a rule
for computing values at [ output units given valucs
at k input units, hence implementing a class of map-
pings from R* to R, we can ask how well arbitrary
mappings from R* to R' can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation
depends on how we measure closeness between func-
tions, which in turn varies significantly with the spe-
cific problem 10 be dealt with. In many applications,
itis necessary to have the network perform sinmul-
taneously well on all input samples taken from some
compact input set X in R-. In this case, closeness is

Reguests for reprints should be sent to Kurt Horik, Institut
fur Statistik und Wahrscheinlichkeitstheorie. Technische Uni-
versitit Wien, Wiedner HauptstraBe 8-10/107. A-1040 Wien. Aus.
tria

measured by the uniform distance between functions
on X, that is,

Poalf. ) = sup |f(x) = g(x)]

In other applications, we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure 2, where u(RY) < =,
In this case, closeness is measured by the L?(x) dis-
tances

el 8) = I [ 150 = g0 dutey

1 = p < =, the most popular choice being p = 2,
corresponding to mean square error.

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-
plications, it is also necessary that the derivatives of
the approximating function implemented by the net-
work closely resemble those of the function to be
approximated, up to some order. This issue was first
taken up in Hornik et al. (1990). who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arise in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series): for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, see Gallant and White
(1989

All papers establishing certain approximation ca-
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Summary of Key ldeas

= Optimize probability of label given input ~ max ll(w) = max Zlogp(y(i)lx(i);w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression

= Now also many more layers before this last layer
= = computing the features
= > the features are learned rather than hand-designed
= Universal function approximation theorem
= If neural net is large enough
= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data = early stopping!

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)



Application: Large Language Models

° Can you please tell my Intro to Al class how a single attention head works, and how that

building block allows you to be a proficient English speaker?

Hello class, I'm happy to explain how a single attention head works in Al systems like
myself. An attention head is a key building block in the neural network architectures, like
the transformers I'm built on, that allow Al to process and understand language.

At its core, an attention head lets the Al system focus on and weight the importance of
different parts of the input as it builds up an understanding. When I process a sentence,
the attention head looks at each word and assigns a weight to how relevant that word is to
understanding other words in the sentence.

For example, take the sentence "The quick brown fox jumps over the lazy dog." The
attention head would highly weight the connections between "fox" and "jumps" since
those are closely related. But it would assign a lower weight between "fox" and "lazy" since
those words are less relevant to each other.

By building up these weighted connections between the different elements of the input,
the attention head creates a rich representation that captures the meaning and context.
Importantly, this happens bidirectionally - each word attends to all the other words,
rather than just the previous words like in older language models.

Multiple attention heads are then stacked together, allowing the model to build up



Application: Computer Vision
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Fun Neural Net Demo Site

= Demo-site:
= http://playground.tensorflow.org/



http://playground.tensorflow.org/

