Lecture 9: Exploration and Exploitation

Lecture 9: Exploration and Exploitation

Slides from David Silver

Lecture 9: Exploration and Exploitation

How to plan when you know how your actions affect your
environment?

MDP lectures

How to learn from data about how your environment works?
Machine Learning lectures

How to trade off collecting data vs. accomplishing goals?
Today (also VPI lecture)

Putting it all together:

RL lectures next week

Lecture 9: Exploration and Exploitation

L Introduction

Exploration vs. Exploitation Dilemma

m Online decision-making involves a fundamental choice:

Exploitation Make the best decision given current information
Exploration Gather more information

m [he best long-term strategy may involve short-term sacrifices

m Gather enough information to make the best overall decisions

Lecture 9: Exploration and Exploitation

L Introduction

Examples

m Restaurant Selection

Exploitation Go to your favourite restaurant
Exploration Try a new restaurant

m Online Banner Advertisements

Exploitation Show the most successful advert
Exploration Show a different advert

m Oil Drilling

Exploitation Drill at the best known location
Exploration Drill at a new location

m Game Playing

Exploitation Play the move you believe is best
Exploration Play an experimental move

Lecture 9: Exploration and Exploitation

L Introduction

Principles

m Naive Exploration
m Add noise to greedy policy (e.g. e-greedy)
m Optimistic Initialisation
m Assume the best until proven otherwise
m Optimism in the Face of Uncertainty
m Prefer actions with uncertain values
m Probability Matching
m Select actions according to probability they are best

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits

The Multi-Armed Bandit

m A multi-armed bandit is a tuple (A4, R)

m A is a known set of m actions (or “arms”)

m R%(r) =1P|[r|a] is an unknown probability
distribution over rewards

m At each step t the agent selects an action
a; € A

m [he environment generates a reward
re ~ Rt

m The goal is to maximise cumulative
t
reward > __, r;

; S HAGEN @ 2001 |

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Regret

Regret

m [he action-value is the mean reward for action a,
Q(a) = E[r|a]
m [he optimal value V* is

V* = Q(a") = max Q(a)

acA

m [he regret is the opportunity loss for one step
Algorithm for

[=K [V* — Q(at)] selecting a, may

. _ have randomness
m [he total regret is the total opportunity loss

t
Le=E|> V*—Q(a)
=1

m Maximise cumulative reward = minimise total regret

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Regret

Counting Regret

Algorithm for selecting a, may have randomness
m The count N¢(a) is expected number of selections for action a

m The gap A, is the difference in value between action a and
optimal action a*, A, = V* — Q(a)
m Regret is a function of gaps and the counts

m A good algorithm ensures small counts for large gaps
m Problem: gaps are not known!

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Regret

Linear or Sublinear Regret

greedy

Total regret
Remember regret Jecaying e-greedy
is expectation of
suboptimality possible plot of

suboptimality

0 1 2 3 4 S] T 8 9 10 1 12 13 14 15 L] 17 18 19
Time-steps

m If an algorithm forever explores it will have linear total regret
m If an algorithm never explores it will have linear total regret

m Is it possible to achieve sublinear total regret?

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

Greedy Algorithm

action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for tin range(inf):
Qhat_a = [total _reward per_action[a] / action_counts[a] for a in range(n_actions)]
a_t = argmax(Qhat_a)
r _t =take action_and _get_random reward(a_t)
action_counts[a_t] +=1
total _reward per_action[a_t] +=r_t

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

Greedy Algorithm

m We consider algorithms that estimate Q:(a) ~ Q(a)

m Estimate the value of each action by Monte-Carlo evaluation

) 1
Q:(a) = Ne(2) ; rel(ay = a)

m [he greedy algorithm selects action with highest value

a; = argmax Q:(a)
acA

m Greedy can lock onto a suboptimal action forever

m = Greedy has linear total regret

Lecture 9: Exploration and Exploitation
|—Multi-Armed Bandits
[—Re ret
24

Regret

m [he action-value is the mean reward for action a,
Q(a) = E[r|a]
m [he optimal value V* is

V* = Q(a") = max Q(a)

acA Actual rewards don’t

m The regret is the opportunity loss for one step affect what we call
regret.
It = IE[\/>i< — Q(at)]
Regretis only a

m [he total regret is the total opportunity loss function of the
actions and the

t
expected payout of
L, =E ZV*_Q(aT) p pay
=1

those actions.

m The gap A, is the difference in value between action a and
optimal action a*, A, = V* — Q(a)

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

e-Greedy Algorithm

m [he e-greedy algorithm continues to explore forever

m With probability 1 — € select a = argmax @(a)
acA
m With probability € select a random action

m Constant € causes a positive lower bound on regret :(

m = e-greedy has linear total regret

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

e-Greedy Algorithm

action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for tin range(inf):
Qhat_a = [total _reward per_action[a] / action_counts[a] for a in range(n_actions)]
a_t = argmax(Qhat_a)
if random_uniform_between 0 _and_1() < epsilon:
a_t =random_action(n_actions)
r _t =take _action_and _get_random reward(a_t)
action_counts[a_t] +=1
total _reward per_action[a_t] +=r_t

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

Optimistic Initialisation

m Simple and practical idea: initialise Q(a) to high value
m Update action value by incremental Monte-Carlo evaluation
m Starting with N(a) > 0

N

Qi(ar) = @t—l + (re — @t—l)

Nt(at)

m Encourages systematic exploration early on

m But can still lock onto suboptimal action

m = greedy + optimistic initialisation has linear total regret
O

= e-greedy + optimistic initialisation has linear total regret

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

Optimistic Initialisation

action_counts = [5 for a in range(n_actions)]
total_reward_per_action = [10 for a in range(n_actions)]

for tin range(inf):
Qhat_a = [total reward per_action[a] / action_counts [a] for a in range(n_actions)]
a_t = argmax(Qhat_a)
if random_uniform_between 0 _and_1() < epsilon:
a_t =random_action(n_actions)
r _t =take _action_and _get_random reward(a_t)
action_counts[a_t] +=1
total _reward per_action[a_t] +=r_t

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

Decaying €;,-Greedy Algorithm

m Pick a decay schedule for €1, €2, ...

m Consider the following schedule

c>0

d= min A;
alA;>0

€+ = mMin M
e " d2t

m Decaying e;-greedy has logarithmic asymptotic total regret!
m Unfortunately, schedule requires advance knowledge of gaps

m Goal: find an algorithm with sublinear regret for any
multi-armed bandit (without knowledge of R)

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Greedy and ¢-greedy algorithms

Decaying €;,-Greedy Algorithm

action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for tin range(inf):
Qhat_a = [total _reward per_action[a] / action_counts[a] for a in range(n_actions)]
a_t = argmax(Qhat_a)
epsilon_t = min{1, starting_epsilon / (t+1)}
if random_uniform_between 0 _and 1() < epsilon_t:
a_t =random_action(n_actions)
r _t =take action_and _get_random reward(a_t)
action_counts[a_t] +=1
total _reward per_action[a_t] +=r_t

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
LLower Bound

Lower Bound

m [he performance of any algorithm is determined by similarity
between optimal arm and other arms

m Hard problems have similar-looking arms with different means

m This is described formally by the gap A, and the similarity in
distributions KL(R?||R?")

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps
expected reward of best action -
A expected reward of a
d

L KL(R?|R¥)
a measure of how different
the reward distributions are

For large enough t: L: > logt E
alA;>

Lecture 9: Exploration and Exploitation
|—Multi-Armed Bandits
[—Re ret
24

Regret

m [he action-value is the mean reward for action a,
Q(a) = E[r|a]
m [he optimal value V* is

V* = Q(a") = max Q(a)

acA

m [he regret is the opportunity loss for one step
l =E[V" — Q(at)]

m [he total regret is the total opportunity loss

» v Q(ar)}
=1

m The gap A, is the difference in value between action a and
optimal action a*, A, = V* — Q(a)

Lt:]E

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Uppc—:r Confidence Bound

Optimism in the Face of Uncertainty

pQ)

Q(a,)

Q(a)

m Which action should we pick?
m [he more uncertain we are about an action-value
m [he more important it is to explore that action

m It could turn out to be the best action

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Uppc—:r Confidence Bound

Optimism in the Face of Uncertainty (2)

m After picking blue action
m We are less uncertain about the value
m And more likely to pick another action

m Until we home in on best action

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Upper Confidence Bound

Upper Confidence Bounds

m Estimate an upper confidence U,(a) for each action value
m Such that Q(a) < Q.(a) + U.(a) with high probability
m This depends on the number of times N(a) has been selected

m Small Ny(a) = large Qt(a) (estimated value is uncertain)
m Large Ni(a) = small U;(a) (estimated value is accurate)

m Select action maximising Upper Confidence Bound (UCB)

N

a; = argmax Q:(a) + U:(a)
acA

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
LUpper Confidence Bound

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let Xi,...,X; be i.i.d. random variables in [0,1], and let
X: = % Zf_:l X, be the sample mean. Then

P [E[X] > X; + u] < e 2

m We will apply Hoeffding's Inequality to rewards of the bandit

m conditioned on selecting action a

P [Q(a) > Qt(a) + Ut(a)] < o—2Nt(a)Ue(a)?

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Uppc—:r Confidence Bound

Calculating Upper Confidence Bounds

m Pick a probability p that true value exceeds UCB

m Now solve for U(a)

e 2Ne(a) Ue(a)® _

— log p
\/2Nt(a)

m Reduce p as we observe more rewards, e.g. p = t—*

Ue(a) =

m Ensures we select optimal action as t — oo

Ui(a) = '\/ illto(ga)t

Lecture 9: Exploration and Exploitation
Ll\/lulti—Armed Bandits
LUpper Confidence Bound

UCB1

m [his leads to the UCB1 algorithm

a; = argmax Q(a) +
=g A)

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

For large enough t: L, <8logt Z N
8|Aa>0

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Upper Confidence Bound

UCB1

action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for tin range(inf):
Qhat_a = [total _reward per_action[a] / action_counts[a] for a in range(n_actions)]

Qoptimist_a = [Qhat_a[a] + sqrt(2 log t / action_counts[a]) for a in range(n_actions)]
a_t = argmax(Qoptimist_a)
r _t =take _action_and _get_random reward(a_t)

action_counts[a_t] +=1
total _reward per_action[a_t] +=r_t

Lecture 9: Exploration and Exploitation
Ll\/lulti—Armed Bandits
LUpper Confidence Bound

Why optimism?

* |f you're optimistic when you don’t know...
* you check it out and learn the truth

* |f you're pessimistic when you don’t know...
* you never check it out and never learn the truth

* Definition of admissible for a heuristic?

If there’s one environment with lots of dangers and another

environment with no major dangers...

* Which environment would you rather be optimistic in?

Which environment would you rather be pessimistic in?

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Bayc—:sian Bandits

Bayesian Bandits

m So far we have made no assumptions about the reward
distribution R

m Except bounds on rewards
m Bayesian bandits exploit prior knowledge of rewards, p [R]
m They compute posterior distribution of rewards p[R | h]
m where hy = a1, r,...,ar—1, rr—1 is the history
m Use posterior to guide exploration

m Upper confidence bounds (Bayesian UCB)
m Probability matching (Thompson sampling)

m Better performance if prior knowledge is accurate

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Bayesian Bandits

Bayesian UCB Example: Independent Gaussians

p(Q)

|
- |
Qa,)
|
|

Q wa,) wa.)

* Maintain Gaussian probability distributions over the expected
reward for each action
e Choose the action that maximizes mean + ¢ * standard deviation

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Bayc—:sian Bandits

Probability Matching

m Probability matching selects action a according to probability
that a is the optimal action

m(a| h)) =P |Q(a) > Q(a’),Va' # a | h¢]

m Probability matching is optimistic in the face of uncertainty
m Uncertain actions have higher probability of being max

m Can be difficult to compute analytically from posterior

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Bayc—:sian Bandits

Thompson Sampling

m [hompson sampling implements probability matching
m(a | h) =P[Q(a) > Q@),Va #a | h]

= ER|p, [1(a = argmax Q(a))
acA
m Use Bayes law to compute posterior distribution p[R | h¢]
m Sample a reward distribution R from posterior
m Compute action-value function Q(a) = E [R,]

m Select action maximising value on sample, a; = argmax Q(a)
acA

m [hompson sampling achieves Lai and Robbins lower bound!

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
l—Information State Search

Value of Information

m Exploration is useful because it gains information

m Can we quantify the value of information?

m How much reward a decision-maker would be prepared to pay
in order to have that information, prior to making a decision
m Long-term reward after getting information - immediate reward

m Information gain is higher in uncertain situations
m [herefore it makes sense to explore uncertain situations more

m If we know value of information, we can trade-off exploration
and exploitation optimally

Lecture 9: Exploration and Exploitation

L Contextual Bandits

Contextual Bandits

m A contextual bandit is a tuple (A,S,R)

FLEASE SUPPORT OUR SFONEORS

m A is a known set of actions (or “arms”)

m S = P[s] is an unknown distribution over e
states (or “contexts”)

m R3(r) =P[rl|s, a] is an unknown » =
m At each step t o

m Environment generates state s; ~ S
m Agent selects action a; € A flLaAs gy
m Environment generates reward r; ~ R

m Goal is to maximise cumulative reward

> o1 fr

Lecture 9: Exploration and Exploitation
LContextual Bandits
I—Linear UCB

Linear Regression

How many of each kind of movie has the Properties of recommended movie
user watched?

Will Slow | Docu- will Reward
Farrell mentary Farrell
vibes vibes

0 0 2 0 0 2 2020 O 1 0 0

1 0 0 0 3 0 2017 O 0 0 0

1 0 0 1 0 5 1999 O 1 0 0

0 0 0 0 0 0 2008 1 0 0 I 1

0 1 0 0 0 0 2012 1 0 1 1

0 0 2 0 0 0 2024 O 0 1 -1

Iqb(sTa aT)I

Reward: 0 for not clicking; 1 for watching;
-1 for watching part and quitting

Lecture 9: Exploration and Exploitation
LContextual Bandits
L_Linear UCB

Linear Regression

m Action-value function is expected reward for state s and
action a

Q(s,a) =E[rls, 4]
m Estimate value function with a linear function approximator
Qu(s,a) = ¢(s,a)' 0 ~ Q(s, a)

m Estimate parameters by least squares regression

At = Z P(sr,ar)o(sr, aT)T
=1

bt — Z Qb(sra 3T)r7'
=1

0, = A7l b

Lecture 9: Exploration and Exploitation
LContextual Bandits
L_Linear UCB

Linear Upper Confidence Bounds

m Least squares regression estimates the mean action-value

QO(Sa 3)
m But it can also estimate the variance of the action-value
(75(S, a) sklearn.linear_model.BayesianRidge.predict() returns both

m i.e. the uncertainty due to parameter estimation error
m Add on a bonus for uncertainty, Uy(s,a) = co

m i.e. define UCB to be ¢ standard deviations above the mean

Lecture 9: Exploration and Exploitation
LContextual Bandits
L_Linear UCB

Geometric Interpretation

x

m Define confidence ellipsoid £; around parameters 6;

m Such that &; includes true parameters 6* with high probability
m Use this ellipsoid to estimate the uncertainty of action values
m Pick parameters within ellipsoid that maximise action value

argmax Qy(s, a)
ocE

Lecture 9: Exploration and Exploitation
L_MDPs

Exploration/Exploitation Principles to MDPs

The same principles for exploration /exploitation apply to MDPs

Lecture 9: Exploration and Exploitation

L-MDPs

Reinforcement Learning: Unknown MDPs

* We've seen how to compute the optimal policy in a known MDP
 We've just discussed a bandit setting with one state (no transitions)
e But the reward function is unknown
 What if we are in an MDP, but we don’t know the transition function
or the reward function?

Lecture 9: Exploration and Exploitation

L-MDPs

Greedy (And Slow) RL Algorithm

* Finite state space, finite action space
* For simplicity, say reward only depends on new state

transition_counts = array of zeros of size SxA xS

state_counts = array of zeros of size S

rewards_by state = array of zeros of size S

s = get _initial_state()

while True:
transition_matrix = estimate_T(transition_counts)
reward_function = estimate R(state_counts, rewards_by state)
policy = solve_mdp(transition_matrix, reward_function) # expensive!
a = policy|[s]
s, r=get _next state _and _reward(s, a)
transition_counts[s][a][s'] +=1
state_counts[s’] +=1
rewards_by state[s’] +=r

Lecture 9: Exploration and Exploitation
L mDPs
l—Optimistic Initialisation

Optimistic Initialisation: Model-Based RL

m Construct an optimistic model of the MDP
m Initialise transitions to go to heaven

m (i.e. transition to terminal state with ., reward)

m Solve optimistic MDP by favourite planning algorithm

m policy iteration
m value iteration
m tree search
O

m Encourages systematic exploration of states and actions

m e.g. RMax algorithm (Brafman and Tennenholtz)

Lecture 9: Exploration and Exploitation

L-MDPs

(Slightly modified) Rmax Algorithm

transition_counts = array of zeros of size (S+1) x A x (S+1)
state_counts = array of zeros of size S+1
rewards_by state = array of zeros of size S+1
rewards_by state[-1] = rmax # maximum possible reward (“heaven state”)
state_counts[-1] =1
for s in range(S+1):
for ain range(A):
transition_counts[s][a][-1] +=1 # pretend we’ve seen transition to heaven
s = get _initial_state()
while True:
transition_matrix = estimate_T(transition_counts) # real Rmax waits to update
until count is high enough
reward_function = estimate R(state_counts, rewards_by_state)
policy = solve_mdp(transition_matrix, reward_function)
a = policy|[s]
s’, r=get _next state _and_reward(s, a)
transition_counts[s][a][s'] +=1
state_counts[s’] +=1
rewards_by state[s’] +=r

