Lecture 9: Exploration and Exploitation

23 Lecture 9: Exploration and Exploitation

Slides from David Silver

How to plan when you know how your actions affect your environment?

MDP lectures

How to learn from data about how your environment works?

Machine Learning lectures

How to trade off collecting data vs. accomplishing goals?

Today (also VPI lecture)

Putting it all together:

RL lectures next week

L Introduction

Exploration vs. Exploitation Dilemma

- Online decision-making involves a fundamental choice:
 Exploitation Make the best decision given current information
 Exploration Gather more information
- The best long-term strategy may involve short-term sacrifices
- Gather enough information to make the best overall decisions

L Introduction

Examples

Restaurant Selection

Exploitation Go to your favourite restaurant Exploration Try a new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location Exploration Drill at a new location

Game Playing

Exploitation Play the move you believe is best Exploration Play an experimental move

L Introduction

Naive Exploration

- Add noise to greedy policy (e.g. e-greedy)
- Optimistic Initialisation
 - Assume the best until proven otherwise
- Optimism in the Face of Uncertainty
 - Prefer actions with uncertain values
- Probability Matching
 - Select actions according to probability they are best

└─ Multi-Armed Bandits

The Multi-Armed Bandit

- A multi-armed bandit is a tuple $\langle \mathcal{A}, \mathcal{R} \rangle$
- A is a known set of m actions (or "arms")
- R^a(r) = P[r|a] is an unknown probability distribution over rewards
- At each step t the agent selects an action $a_t \in \mathcal{A}$
- The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- The goal is to maximise cumulative reward $\sum_{\tau=1}^{t} r_{\tau}$

Regret

The *action-value* is the mean reward for action *a*,

$$Q(a) = \mathbb{E}\left[r|a
ight]$$

The optimal value V* is

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

The regret is the opportunity loss for one step

$$I_t = \mathbb{E}\left[V^* - Q(a_t)
ight]$$

Algorithm for selecting a_t may have randomness

The total regret is the total opportunity loss

$$L_t = \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_{ au})
ight]$$

• Maximise cumulative reward \equiv minimise total regret

└─ Multi-Armed Bandits

└─ Regret

Counting Regret

- Algorithm for selecting a_t may have randomness
- The count $N_t(a)$ is expected number of selections for action a
- The gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_a = V^* Q(a)$
- Regret is a function of gaps and the counts

$$L_t = \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_{ au})
ight] \ = \sum_{a \in \mathcal{A}} \mathbb{E}\left[N_t(a)\right] (V^* - Q(a)) \ = \sum_{a \in \mathcal{A}} \mathbb{E}\left[N_t(a)\right] \Delta_a$$

A good algorithm ensures small counts for large gaps
 Problem: gaps are not known!

Multi-Armed Bandits

—Regret

Linear or Sublinear Regret

- If an algorithm forever explores it will have linear total regret
- If an algorithm never explores it will have linear total regret
- Is it possible to achieve sublinear total regret?

Lecture 9: Exploration and Exploitation

L Multi-Armed Bandits

 \Box Greedy and ϵ -greedy algorithms

Greedy Algorithm

```
action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]
```

for t in range(inf):

```
Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]
```

```
a_t = argmax(Qhat_a)
r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t
```

└─ Multi-Armed Bandits

Greedy and ϵ -greedy algorithms

Greedy Algorithm

- We consider algorithms that estimate $\hat{Q}_t(a) pprox Q(a)$
- Estimate the value of each action by Monte-Carlo evaluation

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{t=1}^T r_t \mathbf{1}(a_t = a)$$

The greedy algorithm selects action with highest value

$$a_t^* = rgmax_{a \in \mathcal{A}} \hat{Q}_t(a)$$

■ Greedy can lock onto a suboptimal action forever
 ■ ⇒ Greedy has linear total regret

└─ Multi-Armed Bandits

└_ Regret

Regret

The action-value is the mean reward for action a,

$$Q(a) = \mathbb{E}\left[r|a
ight]$$

The optimal value V* is

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

The regret is the opportunity loss for one step

$$I_t = \mathbb{E}\left[V^* - Q(a_t)\right]$$

Actual rewards don't affect what we call regret.

Regret is only a function of the actions and the *expected* payout of those actions.

The total regret is the total opportunity loss

$$L_t = \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_ au)
ight]$$

The gap Δ_a is the difference in value between action a and optimal action a^{*}, Δ_a = V^{*} − Q(a)

Lecture 9: Exploration and Exploitation

└─ Multi-Armed Bandits

 \Box Greedy and ϵ -greedy algorithms

$\epsilon\text{-}\mathsf{Greedy}$ Algorithm

• The ϵ -greedy algorithm continues to explore forever

• With probability $1 - \epsilon$ select $a = \operatorname{argmax} \hat{Q}(a)$

• With probability ϵ select a random action

Constant ϵ causes a positive lower bound on regret :(

$$l_t \geq rac{\epsilon}{\mathcal{A}} \sum_{m{a} \in \mathcal{A}} \Delta_{m{a}}$$

 $\bullet \Rightarrow \epsilon$ -greedy has linear total regret

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

 \Box Greedy and ϵ -greedy algorithms

ϵ -Greedy Algorithm

```
action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]
```

for t in range(inf):

```
Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]
```

- Multi-Armed Bandits
 - Greedy and ϵ -greedy algorithms

Optimistic Initialisation

- Simple and practical idea: initialise Q(a) to high value
- Update action value by incremental Monte-Carlo evaluation
- Starting with N(a) > 0

$$\hat{Q}_t(a_t) = \hat{Q}_{t-1} + rac{1}{N_t(a_t)}(r_t - \hat{Q}_{t-1})$$

- Encourages systematic exploration early on
- But can still lock onto suboptimal action
- \blacksquare \Rightarrow greedy + optimistic initialisation has linear total regret
- $\bullet \Rightarrow \epsilon$ -greedy + optimistic initialisation has linear total regret

Multi-Armed Bandits

 \Box Greedy and ϵ -greedy algorithms

Optimistic Initialisation

```
action_counts = [5 for a in range(n_actions)]
total_reward_per_action = [10 for a in range(n_actions)]
```

for t in range(inf):

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

 \Box Greedy and ϵ -greedy algorithms

Decaying ϵ_t -Greedy Algorithm

- Pick a decay schedule for $\epsilon_1, \epsilon_2, ...$
- Consider the following schedule

$$c > 0$$

$$d = \min_{a \mid \Delta_a > 0} \Delta_i$$

$$\epsilon_t = \min \left\{ 1, \frac{c \mid \mathcal{A} \mid}{d^2 t} \right\}$$

- Decaying ϵ_t -greedy has *logarithmic* asymptotic total regret!
- Unfortunately, schedule requires advance knowledge of gaps
- Goal: find an algorithm with sublinear regret for any multi-armed bandit (without knowledge of R)

Multi-Armed Bandits

 \Box Greedy and ϵ -greedy algorithms

Decaying ϵ_t -Greedy Algorithm

```
action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]
```

for t in range(inf):

```
Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]
a_t = argmax(Qhat_a)
epsilon_t = min{1, starting_epsilon / (t+1)}
```

```
r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t
```

Lower Bound

Lower Bound

- The performance of any algorithm is determined by similarity between optimal arm and other arms
- Hard problems have similar-looking arms with different means
- This is described formally by the gap Δ_a and the similarity in distributions KL(R^a||R^{a^{*}})

Theorem (Lai and Robbins)

Regret

The action-value is the mean reward for action a,

$$Q(a) = \mathbb{E}\left[r|a
ight]$$

The optimal value V* is

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

The regret is the opportunity loss for one step

$$I_t = \mathbb{E}\left[V^* - Q(a_t)\right]$$

The total regret is the total opportunity loss

$$L_t = \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_ au)
ight]$$

The gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_a = V^* - Q(a)$

└─ Multi-Armed Bandits

└─Upper Confidence Bound

Optimism in the Face of Uncertainty

- Which action should we pick?
- The more uncertain we are about an action-value
- The more important it is to explore that action
- It could turn out to be the best action

Multi-Armed Bandits

└─Upper Confidence Bound

Optimism in the Face of Uncertainty (2)

- After picking blue action
- We are less uncertain about the value
- And more likely to pick another action
- Until we home in on best action

└─ Multi-Armed Bandits

Upper Confidence Bound

Upper Confidence Bounds

- **E**stimate an upper confidence $\hat{U}_t(a)$ for each action value
- Such that $Q(a) \leq \hat{Q}_t(a) + \hat{U}_t(a)$ with high probability
- This depends on the number of times N(a) has been selected
 - Small $N_t(a) \Rightarrow$ large $\hat{U}_t(a)$ (estimated value is uncertain)
 - Large $N_t(a) \Rightarrow$ small $\hat{U}_t(a)$ (estimated value is accurate)

Select action maximising Upper Confidence Bound (UCB)

$$a_t = rgmax_{a \in \mathcal{A}} \hat{Q}_t(a) + \hat{U}_t(a)$$

Lecture 9: Exploration and Exploitation

└─ Multi-Armed Bandits

Upper Confidence Bound

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_t$ be i.i.d. random variables in [0,1], and let $\overline{X}_t = \frac{1}{\tau} \sum_{\tau=1}^t X_{\tau}$ be the sample mean. Then

$$\mathbb{P}\left[\mathbb{E}\left[X\right] > \overline{X}_t + u\right] \le e^{-2tu^2}$$

We will apply Hoeffding's Inequality to rewards of the bandit
 conditioned on selecting action a

$$\mathbb{P}\left[Q(a)>\hat{Q}_t(a)+U_t(a)
ight]\leq e^{-2N_t(a)U_t(a)^2}$$

L Multi-Armed Bandits

Upper Confidence Bound

Calculating Upper Confidence Bounds

Pick a probability p that true value exceeds UCB
 Now solve for U_t(a)

$$e^{-2N_t(a)U_t(a)^2} = p$$
$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

- Reduce p as we observe more rewards, e.g. $p = t^{-4}$
- Ensures we select optimal action as $t \to \infty$

$$U_t(a) = \sqrt{\frac{2\log t}{N_t(a)}}$$

This leads to the UCB1 algorithm

$$a_t = \operatorname*{argmax}_{a \in \mathcal{A}} Q(a) + \sqrt{rac{2 \log t}{N_t(a)}}$$

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

For large enough *t*:

$$L_t \leq 8 \log t \sum_{a \mid \Delta_a > 0} \Delta_a$$

```
Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

UCB1
```

```
action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]
```

for t in range(inf):

Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]

```
Qoptimist_a = [Qhat_a[a] + sqrt(2 log t / action_counts[a]) for a in range(n_actions)]
```

```
a_t = argmax(Qoptimist_a)
r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t
```

- └─Multi-Armed Bandits
 - -Upper Confidence Bound

Why optimism?

- If you're optimistic when you don't know...
 - you check it out and learn the truth
- If you're pessimistic when you don't know...
 - you never check it out and never learn the truth
- Definition of *admissible* for a heuristic?
- If there's one environment with lots of dangers and another environment with no major dangers...
 - Which environment would you rather be optimistic in? Which environment would you rather be pessimistic in?

└─ Multi-Armed Bandits

–Bayesian Bandits

Bayesian Bandits

- So far we have made no assumptions about the reward distribution R
 - Except bounds on rewards
- Bayesian bandits exploit prior knowledge of rewards, $p[\mathcal{R}]$
- They compute posterior distribution of rewards $p[\mathcal{R} \mid h_t]$
 - where $h_t = a_1, r_1, ..., a_{t-1}, r_{t-1}$ is the history
- Use posterior to guide exploration
 - Upper confidence bounds (Bayesian UCB)
 - Probability matching (Thompson sampling)
- Better performance if prior knowledge is accurate

└─Multi-Armed Bandits

–Bayesian Bandits

Bayesian UCB Example: Independent Gaussians

- Maintain Gaussian probability distributions over the expected reward for each action
- Choose the action that maximizes mean + c * standard deviation

└─ Multi-Armed Bandits

–Bayesian Bandits

Probability Matching

Probability matching selects action a according to probability that a is the optimal action

$$\pi(a \mid h_t) = \mathbb{P}\left[Q(a) > Q(a'), \forall a' \neq a \mid h_t\right]$$

- Probability matching is optimistic in the face of uncertainty
 Uncertain actions have higher probability of being max
- Can be difficult to compute analytically from posterior

—Bayesian Bandits

Thompson Sampling

Thompson sampling implements probability matching

$$egin{aligned} \pi(a \mid h_t) &= \mathbb{P}\left[Q(a) > Q(a'), orall a'
eq a \mid h_t
ight] \ &= \mathbb{E}_{\mathcal{R} \mid h_t}\left[\mathbf{1}(a = rgmax_{a \in \mathcal{A}} Q(a))
ight] \end{aligned}$$

- Use Bayes law to compute posterior distribution $p[\mathcal{R} \mid h_t]$
- **Sample** a reward distribution \mathcal{R} from posterior
- Compute action-value function $Q(a) = \mathbb{E}[\mathcal{R}_a]$
- Select action maximising value on sample, $a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(a)$
- Thompson sampling achieves Lai and Robbins lower bound!

- Multi-Armed Bandits
 - └-Information State Search

Value of Information

- Exploration is useful because it gains information
- Can we quantify the value of information?
 - How much reward a decision-maker would be prepared to pay in order to have that information, prior to making a decision
 - Long-term reward after getting information immediate reward
- Information gain is higher in uncertain situations
- Therefore it makes sense to explore uncertain situations more
- If we know value of information, we can trade-off exploration and exploitation optimally

└─ Contextual Bandits

Contextual Bandits

- A contextual bandit is a tuple $\langle \mathcal{A}, \mathcal{S}, \mathcal{R} \rangle$
- A is a known set of actions (or "arms")
- S = P[s] is an unknown distribution over states (or "contexts")
- $\mathcal{R}^{a}_{s}(r) = \mathbb{P}[r|s, a]$ is an unknown probability distribution over rewards
- At each step t
 - Environment generates state $s_t \sim S$
 - Agent selects action $a_t \in \mathcal{A}$
 - Environment generates reward $r_t \sim \mathcal{R}_{s_t}^{a_t}$
- Goal is to maximise cumulative reward $\sum_{\tau=1}^{t} r_{\tau}$

Contextual Bandits

Linear UCB

Linear Regression

How many of each kind of movie has the user watched?					Properties of recommended movie					
Oscar winner	Will Farrell vibes	Action	Slow pace	Docu- mentary	Num Oscar noms	Year made	Will Farrell vibes	Slow pace	Act- ion	Reward
0	0	2	0	0	2	2020	0	1	0	0
1	0	0	0	3	0	2017	0	0	0	0
1	0	0	1	0	5	1999	0	1	0	0
0	0	0	0	0	0	2008	1	0	0	1
0	1	0	0	0	0	2012	1	0	1	1
0	0	2	0	0	0	2024	0	0	1	-1

Reward: 0 for not clicking; 1 for watching; -1 for watching part and quitting Contextual Bandits

Linear UCB

Linear Regression

 Action-value function is expected reward for state s and action a

$$Q(s,a) = \mathbb{E}\left[r|s,a
ight]$$

Estimate value function with a linear function approximator

$$Q_{ heta}(s,a) = \phi(s,a)^{ op} heta pprox Q(s,a)$$

Estimate parameters by least squares regression

$$egin{aligned} & A_t = \sum_{ au=1}^t \phi(s_ au, a_ au) \phi(s_ au, a_ au)^ op \ & b_t = \sum_{ au=1}^t \phi(s_ au, a_ au) r_ au \ & heta_t = A_t^{-1} b_t \end{aligned}$$

└─ Contextual Bandits

Linear UCB

Linear Upper Confidence Bounds

- Least squares regression estimates the mean action-value $Q_{\theta}(s, a)$
- But it can also estimate the variance of the action-value $\sigma_{\theta}^2(s, a)$ sklearn.linear_model.BayesianRidge.predict() returns both
- i.e. the uncertainty due to parameter estimation error
- Add on a bonus for uncertainty, $U_{\theta}(s, a) = c\sigma$
- i.e. define UCB to be *c* standard deviations above the mean

Contextual Bandits

–Linear UCB

Geometric Interpretation

- Define confidence ellipsoid \mathcal{E}_t around parameters θ_t
- Such that \mathcal{E}_t includes true parameters θ^* with high probability
- Use this ellipsoid to estimate the uncertainty of action values
- Pick parameters within ellipsoid that maximise action value

$$rgmax_{ heta \in \mathcal{E}} Q_{ heta}(s, a)$$

Exploration/Exploitation Principles to MDPs

The same principles for exploration/exploitation apply to MDPs

Reinforcement Learning: Unknown MDPs

- We've seen how to compute the optimal policy in a known MDP
- We've just discussed a bandit setting with one state (no transitions)
 - But the reward function is unknown
- What if we are in an MDP, but we don't know the transition function or the reward function?

Lecture 9: Exploration and Exploitation

Greedy (And Slow) RL Algorithm

- Finite state space, finite action space
- For simplicity, say reward only depends on new state

```
transition_counts = array of zeros of size S x A x S
state_counts = array of zeros of size S
rewards_by_state = array of zeros of size S
s = get_initial_state()
while True:
    transition_matrix = estimate_T(transition_counts)
    reward_function = estimate_R(state_counts, rewards_by_state)
    policy = solve_mdp(transition_matrix, reward_function)  # expensive!
    a = policy[s]
    s', r = get_next_state_and_reward(s, a)
    transition_counts[s][a][s'] += 1
    state_counts[s'] += 1
    rewards_by_state[s'] += r
```

L MDPs

└─Optimistic Initialisation

Optimistic Initialisation: Model-Based RL

- Construct an optimistic model of the MDP
- Initialise transitions to go to heaven
 - (i.e. transition to terminal state with *r_{max}* reward)
- Solve optimistic MDP by favourite planning algorithm
 - policy iteration
 - value iteration
 - tree search
 - ...
- Encourages systematic exploration of states and actions
- e.g. RMax algorithm (Brafman and Tennenholtz)

L MDPs

(Slightly modified) Rmax Algorithm

```
transition_counts = array of zeros of size (S+1) x A x (S+1)
state_counts = array of zeros of size S+1
rewards by state = array of zeros of size S+1
rewards_by_state[-1] = rmax
                                                  # maximum possible reward ("heaven state")
state_counts[-1] = 1
for s in range(S+1):
         for a in range(A):
                   transition_counts[s][a][-1] += 1 # pretend we've seen transition to heaven
s = get initial state()
while True:
         transition matrix = estimate T(transition counts)
                                                                   # real Rmax waits to update
                                                                     until count is high enough
         reward_function = estimate_R(state_counts, rewards_by_state)
         policy = solve_mdp(transition_matrix, reward_function)
         a = policy[s]
         s', r = get next state and reward(s, a)
         transition counts[s][a][s'] += 1
         state counts[s'] += 1
         rewards_by_state[s'] += r
```