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How to plan when you know how your actions affect your 
environment?

MDP lectures

How to learn from data about how your environment works?

Machine Learning lectures

How to trade off collecting data vs. accomplishing goals?

Today (also VPI lecture)

Putting it all together:

RL lectures next week
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Algorithm for selecting at may have randomness



Remember regret 
is expectation of 
suboptimality possible plot of 

suboptimality



action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for t in range(inf):
Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]
a_t = argmax(Qhat_a)
r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t





Actual rewards don’t 
affect what we call 
regret.

Regret is only a 
function of the 
actions and the 
expected payout of 
those actions.



causes a positive lower bound on regret :(



action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for t in range(inf):
Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]
a_t = argmax(Qhat_a)

r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t

if random_uniform_between_0_and_1() < epsilon:
a_t = random_action(n_actions)





action_counts = [5 for a in range(n_actions)]
total_reward_per_action = [10 for a in range(n_actions)]

for t in range(inf):
Qhat_a = [total_reward_per_action[a] / action_counts [a] for a in range(n_actions)]
a_t = argmax(Qhat_a)

r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t

if random_uniform_between_0_and_1() < epsilon:
a_t = random_action(n_actions)





action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for t in range(inf):
Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]
a_t = argmax(Qhat_a)

r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t

if random_uniform_between_0_and_1() < epsilon_t:
a_t = random_action(n_actions)

epsilon_t = min{1, starting_epsilon / (t+1)}



For large enough t:

expected reward of best action -
expected reward of a

a measure of how different 
the reward distributions are















For large enough t:



action_counts = [0 for a in range(n_actions)]
total_reward_per_action = [0 for a in range(n_actions)]

for t in range(inf):
Qhat_a = [total_reward_per_action[a] / action_counts[a] for a in range(n_actions)]

a_t = argmax(Qoptimist_a)
r_t = take_action_and_get_random_reward(a_t)
action_counts[a_t] += 1
total_reward_per_action[a_t] += r_t

Qoptimist_a = [Qhat_a[a] + sqrt(2 log t / action_counts[a]) for a in range(n_actions)]



Why optimism?

• If you’re optimistic when you don’t know…
• you check it out and learn the truth

• If you’re pessimistic when you don’t know…
• you never check it out and never learn the truth

• Definition of admissible for a heuristic?
• If there’s one environment with lots of dangers and another 

environment with no major dangers…
• Which environment would you rather be optimistic in? 

Which environment would you rather be pessimistic in?





• Maintain Gaussian probability distributions over the expected 
reward for each action

• Choose the action that maximizes mean + c * standard deviation











Oscar 
winner

Will 
Farrell 
vibes

Action Slow 
pace

Docu-
mentary

Num 
Oscar 
noms

Year 
made

Will 
Farrell 
vibes

Slow 
pace

Act-
ion

0 0 2 0 0 2 2020 0 1 0

1 0 0 0 3 0 2017 0 0 0

1 0 0 1 0 5 1999 0 1 0

0 0 0 0 0 0 2008 1 0 0

0 1 0 0 0 0 2012 1 0 1

0 0 2 0 0 0 2024 0 0 1

How many of each kind of movie has the 
user watched?

Properties of recommended movie

Reward: 0 for not clicking; 1 for watching; 
-1 for watching part and quitting

Reward

0

0

0

1

1

-1





sklearn.linear_model.BayesianRidge.predict() returns both







Reinforcement Learning: Unknown MDPs

• We’ve seen how to compute the optimal policy in a known MDP
• We’ve just discussed a bandit setting with one state (no transitions)
• But the reward function is unknown

• What if we are in an MDP, but we don’t know the transition function 
or the reward function?



Greedy (And Slow) RL Algorithm

• Finite state space, finite action space
• For simplicity, say reward only depends on new state

transition_counts = array of zeros of size S x A x S
state_counts = array of zeros of size S
rewards_by_state = array of zeros of size S
s = get_initial_state()
while True:

transition_matrix = estimate_T(transition_counts)
reward_function = estimate_R(state_counts, rewards_by_state)
policy = solve_mdp(transition_matrix, reward_function)                 # expensive!
a = policy[s]
s’, r = get_next_state_and_reward(s, a)
transition_counts[s][a][s’] += 1
state_counts[s’] += 1
rewards_by_state[s’] += r





(Slightly modified) Rmax Algorithm

transition_counts = array of zeros of size (S+1) x A x (S+1)
state_counts = array of zeros of size S+1
rewards_by_state = array of zeros of size S+1
rewards_by_state[-1] = rmax # maximum possible reward (“heaven state”)
state_counts[-1] = 1
for s in range(S+1):

for a in range(A):
transition_counts[s][a][-1] += 1    # pretend we’ve seen transition to heaven

s = get_initial_state()
while True:

transition_matrix = estimate_T(transition_counts)              # real Rmax waits to update
until count is high enough

reward_function = estimate_R(state_counts, rewards_by_state)
policy = solve_mdp(transition_matrix, reward_function)
a = policy[s]
s’, r = get_next_state_and_reward(s, a)
transition_counts[s][a][s’] += 1
state_counts[s’] += 1
rewards_by_state[s’] += r


