Announcements

- HW 9 and Project 5 are due **tonight, April 16, 11:59 PM PT**
- HW 10 will be released soon, due **Tuesday, April 23, 11:59 PM PT**
- Project 6 out later this week, due **Friday, April 26, 11:59 PM PT**

- **Course evaluations are live!**
 - Log in at course-evaluations.berkeley.edu

Pre-scan attendance QR code now!
Reinforcement Learning
Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!
Example: Samuel’s checker player (1956-67)
Example: Learning to Walk

Initial

[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]
Example: Breakout (DeepMind)
Example: AlphaGo (2016)
The Crawler!
Video of Demo Crawler Bot
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) $A(s)$
 - A transition model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must explore new states and actions to discover how the world works
Reinforcement Learning

- What if the MDP is initially unknown? Lots of things change!
 - **Exploration**: you have to try unknown actions to get information
 - **Exploitation**: eventually, you have to use what you know
 - **Regret**: early on, you inevitably “make mistakes” and lose reward
 - **Sampling**: you may need to repeat many times to get good estimates
 - **Generalization**: what you learn in one state may apply to others too
Bandits

- Exactly one state
- Set of actions: A
- Stochastic reward function: $P(r|a)$

Contextual Bandits:
- Set of states $s \in S$
- Transitions always return to start state distribution $P(s'|s, a) = P_0(s')$
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions
 a. Direct evaluation
 b. Temporal difference learning
 c. Q-learning

3. Optimize the policy directly
Passive vs Active Reinforcement Learning
Model-Based RL
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Directly estimate each entry in $T(s,a,s')$ from counts
 - Discover each $R(s,a,s')$ when we experience the transition

- **Step 2: Solve the learned MDP**
 - Use, e.g., value or policy iteration, as before
Example: Model-Based Learning

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Learned Model

$T(s,a,s')$
- $T(B, \text{east, } C) = 1.00$
- $P(C, \text{east, } D) = 0.75$
- $P(C, \text{east, } A) = 0.25$

$R(s,a,s')$
- $R(B, \text{east, } C) = -1$
- $R(C, \text{east, } D) = -1$
- $R(D, \text{exit, } x) = +10$

Assume: $\gamma = 1$
Pros and cons

Pro:
- Makes efficient use of experiences (low *sample complexity*)

Con:
- May not scale to large state spaces
 - Solving MDP is intractable for very large $|S|$
- RL feedback loop tends to magnify small model errors
- Much harder when the environment is partially observable
Basic idea of model-free methods

- To approximate expectations with respect to a distribution, you can either
 - Estimate the distribution from samples, compute an expectation
 - Or, bypass the distribution and estimate the expectation from samples directly
Example: Expected Age

Goal: Compute expected age of cs188 students

<table>
<thead>
<tr>
<th>Known $P(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots$</td>
</tr>
</tbody>
</table>

Without $P(A)$, instead collect samples $[a_1, a_2, \ldots, a_N]$

“Model Based”: estimate $P(A)$:

- $\hat{P}(A=a) = N_a/N$
- $E[A] \approx \sum_a \hat{P}(a) \cdot a$

“Model Free”: estimate expectation

- $E[A] \approx 1/N \sum_i a_i$

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know T and R
 - **Goal: learn the state values** $V^\pi(s)$
Direct evaluation

- Goal: Estimate $V_\pi(s)$, i.e., expected total discounted reward from s onwards

- Idea:
 - Use *returns*, the *actual* sums of discounted rewards from s
 - Average over multiple trials and visits to s

- This is called **direct evaluation** (or direct utility estimation)
Example: Direct Estimation

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

Assume: $\gamma = 1$
Problems with Direct Estimation

What’s good about direct estimation?

- It’s easy to understand
- It doesn’t require any knowledge of T and R
- It converges to the right answer in the limit

What’s bad about it?

- Each state must be learned separately (fixable)
- It ignores information about state connections
- So, it takes a long time to learn

E.g., B=at home, study hard
E=at library, study hard
C=know material, go to exam

If B and E both go to C under this policy, how can their values be different?
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$
TD as approximate Bellman update

- Given a fixed policy, the value of a state is an expectation over next-state values:
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

- Idea 1: Use actual samples to estimate the expectation:
 \[\text{sample}_1 = R(s, \pi(s), s_1') + \gamma V^\pi(s_1') \]
 \[\text{sample}_2 = R(s, \pi(s), s_2') + \gamma V^\pi(s_2') \]
 \[\vdots \]
 \[\text{sample}_N = R(s, \pi(s), s_N') + \gamma V^\pi(s_N') \]
 \[V^\pi(s) \leftarrow 1/N \sum_i \text{sample}_i \]
TD as approximate Bellman update

- Idea 2: Update value of s after each transition s,a,s',r:

 - Update $V^\pi([3,1])$ based on $R([3,1], \text{up}, [3,2])$ and $\gamma V^\pi([3,2])$
 - Update $V^\pi([3,2])$ based on $R([3,2], \text{up}, [3,3])$ and $\gamma V^\pi([3,3])$
 - Update $V^\pi([3,3])$ based on $R([3,3], \text{right}, [4,3])$ and $\gamma V^\pi([4,3])$

![Diagram showing the transitions and updates](image)
TD as approximate Bellman update

- Idea 3: Update values by maintaining a *running average*
Running averages

- How do you compute the average of 1, 4, 7?
- Method 1: add them up and divide by N
 - $1+4+7 = 12$
 - average $= 12/N = 12/3 = 4$
- Method 2: keep a running average μ_n and a running count n
 - $n=0 \quad \mu_0=0$
 - $n=1 \quad \mu_1 = (0 \cdot \mu_0 + x_1)/1 = (0 \cdot 0 + 1)/1 = 1$
 - $n=2 \quad \mu_2 = (1 \cdot \mu_1 + x_2)/2 = (1 \cdot 1 + 4)/2 = 2.5$
 - $n=3 \quad \mu_3 = (2 \cdot \mu_2 + x_3)/3 = (2 \cdot 2.5 + 7)/3 = 4$
- General formula: $\mu_n = ((n-1) \cdot \mu_{n-1} + x_n)/n$
 - $= [(n-1)/n] \mu_{n-1} + [1/n] x_n$ (weighted average of old mean, new sample)
What if we use a weighted average with a fixed weight?

\[\mu_n = (1-\alpha) \mu_{n-1} + \alpha x_n \]

- \(\mu_1 = x_1 \)
- \(\mu_2 = (1-\alpha) \cdot \mu_1 + \alpha x_2 = (1-\alpha) \cdot x_1 + \alpha x_2 \)
- \(\mu_3 = (1-\alpha) \cdot \mu_2 + \alpha x_3 = (1-\alpha)^2 \cdot x_1 + \alpha(1-\alpha)x_2 + \alpha x_3 \)
- \(\mu_4 = (1-\alpha) \cdot \mu_3 + \alpha x_4 = (1-\alpha)^3 \cdot x_1 + \alpha(1-\alpha)^2x_2 + \alpha(1-\alpha)x_3 + \alpha x_4 \)

I.e., *exponential forgetting* of old values

\(\mu_n \) is a convex combination of sample values (weights sum to 1)

\(E[\mu_n] \) is a convex combination of \(E[X_i] \) values, hence unbiased
Idea 3: Update values by maintaining a running average

\[
\text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s')
\]

\[
V^\pi(s) \leftarrow (1-\alpha) \cdot V^\pi(s) + \alpha \cdot \text{sample}
\]

\[
V^\pi(s) \leftarrow V^\pi(s) + \alpha \cdot [\text{sample} - V^\pi(s)]
\]

This is the temporal difference learning rule

\[
[\text{sample} - V^\pi(s)] \text{ is the “TD error”}
\]

\[
\alpha \text{ is the learning rate}
\]

Observe a sample, move \(V^\pi(s) \) a little bit to make it more consistent with its neighbor \(V^\pi(s') \)
Example: Temporal Difference Learning

Assume: $\gamma = 1, \alpha = 1/2$

States

Observed Transitions

\[V^\pi(s) \leftarrow (1-\alpha) V^\pi(s) + \alpha \cdot [R(s,\pi(s),s') + \gamma V^\pi(s')] \]
Problems with TD Value Learning

- Model-free policy evaluation!
- Bellman updates with running sample mean!
- Need the transition model to improve the policy!
Detour: Q-Value Iteration

- **Value iteration**: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $(k+1)$ q-values for all q-states:
 $$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$
Recall the definition of Q values:

- $Q^*(s,a) = \text{expected return from doing } a \text{ in } s \text{ and then behaving optimally thereafter; and } \pi^*(s) = \max_a Q^*(s,a)$

Bellman equation for Q values:

- $Q^*(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma \max_{a'} Q^*(s',a')]$

Approximate Bellman update for Q values:

- $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$

We obtain a policy from learned $Q(s,a)$, with no model!

(No free lunch: $Q(s,a)$ table is $|A|$ times bigger than $V(s)$ table)
Q-Learning

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: \(Q(s,a) \)
 - Consider your new sample estimate:
 \[
 \text{sample} = R(s,a,s') + \gamma \max_{a'} Q(s',a')
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s,a) \leftarrow (1-\alpha) \ Q(s,a) + \alpha \cdot [\text{sample}]
 \]
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if samples are generated from a suboptimal policy!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Summary

- **RL solves MDPs via direct experience of transitions and rewards**
- **There are several approaches:**
 - Learn the MDP model and solve it
 - Learn V directly from sums of rewards, or by TD local adjustments
 - Still need a model to make decisions by lookahead
 - Learn Q by local Q-learning adjustments, use it directly to pick actions
 - (and about 100 other variations)
- **Big missing pieces:**
 - How to explore without too much regret?
 - How to scale this up to Tetris (10^{60}), Go (10^{172}), StarCraft ($|A|=10^{26}$)?