
Announcements

§ HW 9 and Project 5 are due tonight, April 16, 11:59 PM PT
§ HW 10 will be released soon, due Tuesday, April 23, 11:59 PM PT
§ Project 6 out later this week, due Friday, April 26, 11:59 PM PT

§ Course evaluations are live!
§ Log in at course-evaluations.berkeley.edu Pre-scan attendance

QR code now!

CS 188: Artificial Intelligence
Reinforcement Learning

Instructors: Cameron Allen and Michael Cohen

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

§ Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must (learn to) act so as to maximize expected rewards
§ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Samuel’s checker player (1956-67)

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Breakout (DeepMind)

[© TwoMinuteLectures]

Example: AlphaGo (2016)

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 6]

Video of Demo Crawler Bot

Reinforcement Learning

§ Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A(s)
§ A transition model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must explore new states and actions to discover how the world works

Reinforcement Learning

§ What if the MDP is initially unknown? Lots of things change!
§ Exploration: you have to try unknown actions to get information
§ Exploitation: eventually, you have to use what you know
§ Regret: early on, you inevitably “make mistakes” and lose reward
§ Sampling: you may need to repeat many times to get good estimates
§ Generalization: what you learn in one state may apply to others too

Bandits

§ Exactly one state
§ Set of actions: A
§ Stochastic reward

function: P(r|a)

Contextual Bandits:
§ Set of states s Î S
§ Transitions always return

to start state distribution
P(s’|s, a) = P0(s’)

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions

a. Direct evaluation
b. Temporal difference learning
c. Q-learning

3. Optimize the policy directly

Passive vs Active Reinforcement Learning

Model-Based RL

Model-Based Learning

§ Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

§ Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Directly estimate each entry in T(s,a,s’) from counts
§ Discover each R(s,a,s’) when we experience the transition

§ Step 2: Solve the learned MDP
§ Use, e.g., value or policy iteration, as before

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
P(C, east, D) = 0.75
P(C, east, A) = 0.25

…

T(s,a,s’)

R(s,a,s’)
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Pros and cons

§ Pro:
§ Makes efficient use of experiences (low sample complexity)

§ Con:
§ May not scale to large state spaces

§ Solving MDP is intractable for very large |S|

§ RL feedback loop tends to magnify small model errors
§ Much harder when the environment is partially observable

Basic idea of model-free methods

§ To approximate expectations with respect to a distribution, you
can either
§ Estimate the distribution from samples, compute an expectation
§ Or, bypass the distribution and estimate the expectation from samples

directly

Example: Expected Age
Goal: Compute expected age of cs188 students

“Model Based”: estimate P(A): “Model Free”: estimate expectation

Without P(A), instead collect samples [a1, a2, … aN]

P^(A=a) = Na/N

E[A] » åa P ̂(a) × a

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Known P(A)

E[A] = åa P(a) × a = 0.35 x 20 + …

E[A] » 1/N åi ai

Passive Reinforcement Learning

§ Simplified task: policy evaluation
§ Input: a fixed policy p(s)
§ You don’t know T and R
§ Goal: learn the state values Vp(s)

Direct evaluation

§ Goal: Estimate Vp(s), i.e., expected total discounted
reward from s onwards

§ Idea:
§ Use returns, the actual sums of discounted rewards from s
§ Average over multiple trials and visits to s

§ This is called direct evaluation (or direct utility
estimation)

Example: Direct Estimation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Estimation

§ What’s good about direct estimation?
§ It’s easy to understand
§ It doesn’t require any knowledge of T and R
§ It converges to the right answer in the limit

§ What’s bad about it?
§ Each state must be learned separately (fixable)
§ It ignores information about state connections
§ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

E.g., B=at home, study hard
E=at library, study hard

C=know material, go to exam

Temporal Difference Learning

§ Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

§ Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

TD as approximate Bellman update
§ Given a fixed policy, the value of a state is an

expectation over next-state values:
§ Vp(s) = ås’ T(s,p(s),s’) [R(s,p(s),s’) + γVp(s’)]

§ Idea 1: Use actual samples to estimate the expectation:
§ sample1 = R(s,p(s),s1’) + γVp(s1’)
§ sample2 = R(s,p(s),s2’) + γVp(s2’)
§ …
§ sampleN = R(s,p(s),sN’) + γVp(sN’)
§ Vp(s) ¬ 1/N åi samplei

TD as approximate Bellman update
§ Idea 2: Update value of s after each transition s,a,s’,r :

§ Update Vp ([3,1]) based on R([3,1],up,[3,2]) and γVp([3,2])
§ Update Vp ([3,2]) based on R([3,2],up,[3,3]) and γVp([3,3])
§ Update Vp ([3,3]) based on R([3,3],right,[4,3]) and γVp([4,3])

TD as approximate Bellman update
§ Idea 3: Update values by maintaining a running average

Running averages

§ How do you compute the average of 1, 4, 7?
§ Method 1: add them up and divide by N

§ 1+4+7 = 12
§ average = 12/N = 12/3 = 4

§ Method 2: keep a running average µn and a running count n
§ n=0 µ0=0
§ n=1 µ1 = (0 × µ0 + x1)/1 = (0 × 0 + 1)/1 = 1
§ n=2 µ2 = (1 × µ1 + x2)/2 = (1 × 1 + 4)/2 = 2.5
§ n=3 µ3 = (2 × µ2 + x3)/3 = (2 × 2.5 + 7)/3 = 4
§ General formula: µn = ((n-1) × µn-1 + xn)/n
§ = [(n-1)/n] µn-1 + [1/n] xn (weighted average of old mean, new sample)

Running averages contd.

§ What if we use a weighted average with a fixed weight?
§ µn = (1-a) µn-1 + a xn
§ n=1 µ1 = x1

§ n=2 µ2 = (1-a) × µ1 + ax2 = (1-a) × x1 + ax2

§ n=3 µ3 = (1-a) × µ2 + ax3 = (1-a)2 × x1 + a(1-a)x2 + ax3

§ n=4 µ4 = (1-a) × µ3 + ax4 = (1-a)3 × x1 + a(1-a)2x2 + a(1-a)x3 + ax4

§ I.e., exponential forgetting of old values
§ µn is a convex combination of sample values (weights sum to 1)
§ E[µn] is a convex combination of E[Xi] values, hence unbiased

TD as approximate Bellman update

§ Idea 3: Update values by maintaining a running average
§ sample = R(s,p(s),s’) + γVp (s’)
§ Vp(s) ¬ (1-a) × Vp(s) + a × sample
§ Vp(s) ¬ Vp(s) + a × [sample - Vp(s)]
§ This is the temporal difference learning rule
§ [sample - Vp(s)] is the “TD error”
§ a is the learning rate

§ Observe a sample, move Vp(s) a little bit to make it more
consistent with its neighbor Vp (s’)

Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Vp(s) ¬ (1-a) Vp(s) + a × [R(s,p(s),s’) + γVp (s’)]

Problems with TD Value Learning

§ Model-free policy evaluation! 🎉
§ Bellman updates with running sample mean! 🎉

§ Need the transition model to improve the policy! 😱

s

s, a1 s, a2s, a0

Detour: Q-Value Iteration

§ Value iteration: find successive (depth-limited) values
§ Start with V0(s) = 0, which we know is right
§ Given Vk, calculate the depth k+1 values for all states:

§ But Q-values are more useful, so compute them instead
§ Start with Q0(s,a) = 0, which we know is right
§ Given Qk, calculate the depth (k+1) q-values for all q-states:

Q-learning as approximate Q-iteration

§ Recall the definition of Q values:
§ Q*(s,a) = expected return from doing a in s and then behaving optimally

thereafter; and p*(s) = maxaQ*(s,a)

§ Bellman equation for Q values:
§ Q*(s,a) = ås’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’)]

§ Approximate Bellman update for Q values:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γmaxa’Q (s’,a’)]

§ We obtain a policy from learned Q(s,a), with no model!
§ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Q-Learning

§ Learn Q(s,a) values as you go
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate: Q(s,a)
§ Consider your new sample estimate:

sample = R(s,a,s’) + γ maxa’ Q(s’,a’)

§ Incorporate the new estimate into a running average:
 Q(s,a) ¬ (1-a) Q(s,a) + a × [sample]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even
if samples are generated from a suboptimal policy!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate
 small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)

Summary

§ RL solves MDPs via direct experience of transitions and rewards
§ There are several approaches:

§ Learn the MDP model and solve it
§ Learn V directly from sums of rewards, or by TD local adjustments

§ Still need a model to make decisions by lookahead

§ Learn Q by local Q-learning adjustments, use it directly to pick actions
§ (and about 100 other variations)

§ Big missing pieces:
§ How to explore without too much regret?
§ How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?

