
Announcements

§ HW 10 due Tuesday, April 23, 11:59 PM PT
§ Project 6 due Friday, April 26, 11:59 PM PT

§ Course evaluations are live!
§ Log in at course-evaluations.berkeley.edu
§ Current response rate: 3%
§ Target response rate: 100% Pre-scan attendance

QR code now!

CS 188: Artificial Intelligence
Reinforcement Learning – Part 2

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Reinforcement Learning

§ Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must (learn to) act so as to maximize expected rewards
§ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Recap: Reinforcement Learning

§ Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A(s)
§ A transition model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must explore new states and actions to discover how the world works

Recap: Offline (MDPs) vs. Online (RL)

Offline/Planning Online/Learning

Recap: Passive vs Active RL

Passive (fixed π) Active (changing π)

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions

a. Direct evaluation
b. Temporal difference learning
c. Q-learning

3. Optimize the policy directly

✅

✅

Temporal Difference Learning

§ Passive setting (fixed policy π), like policy evaluation:
Vp(s) = ås’ T(s,p(s),s’) [R(s,p(s),s’) + γVp(s’)]

§ Modifications:
1. Don’t know T or R; estimate expectation from samples!

Vp(s) = !
"

 åi [ri + γVp(si’)]

2. Update V(s) after each transition (s,a,s’,r) using running average.

3. Decay older samples as new ones come in.

p(s)
s

s, p(s)

s’

Example: TD Value Estimation

§ Experience transition i: (𝑠𝑖, 𝑎! , 𝑠!" 	, 𝑟𝑖).
§ Compute sampled value “target”: 𝑟! + 𝛾𝑉#(𝑠!").
§ Compute “TD error”: 𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .
§ Update: 𝑉# 𝑠! += 𝛼! ⋅ 𝛿!.

Example: TD Value Estimation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

Example: TD Value Estimation

§ Experience transition i: (𝑠𝑖, 𝑎! , 𝑠!" 	, 𝑟𝑖).
§ Compute sampled value “target”: 𝑟! + 𝛾𝑉#(𝑠!").
§ Compute “TD error”: 𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .
§ Update: 𝑉# 𝑠! += 𝛼! ⋅ 𝛿!.

i s a s' r 𝒓 + 𝛾𝑉! 𝒔" 𝑉! 𝒔 𝛿

1
2
3
4
5
6
7

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

E, north, C, -1
C, east, D, -1
D, exit, x, +10

s V(s)
A
B
C
D
E

Example: TD Value Estimation

§ Experience transition i: (𝑠𝑖, 𝑎! , 𝑠!" 	, 𝑟𝑖).
§ Compute sampled value “target”: 𝑟! + 𝛾𝑉#(𝑠!").
§ Compute “TD error”: 𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .
§ Update: 𝑉# 𝑠! += 𝛼! ⋅ 𝛿!.

i s a s' r 𝒓 + 𝛾𝑉! 𝒔" 𝑉! 𝒔 𝛿

1 B east C -1 -1 + 0 0 -1
2 C east D -1 -1 + 0 0 -1
3 D exit --- 10 10 + 0 0 +10
4 B east C -1 -1 + -1 -1 -1
5 C east D -1 -1 + 10 -1 +9
6 D exit --- 10 10 + 0 10 0
7 E north C -1 -1 + 9 0 +8

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

E, north, C, -1
C, east, D, -1
D, exit, x, +10

s V(s)
A 0
B -1
C 9
D 10
E 8

Example: TD Value Estimation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+3 +4 +10

-10

+3

Temporal Difference Learning

§ Passive setting (fixed policy π), like policy evaluation:
Vp(s) = ås’ T(s,p(s),s’) [R(s,p(s),s’) + γVp(s’)]

§ Modifications:
1. Don’t know T or R; estimate expectation from samples!

Vp(s) =)
*

 åi [ri + γVp(si’)]

2. Update V(s) after each transition (s,a,s’,r) using running average.

3. Decay older samples as new ones come in.

p(s)
s

s, p(s)

s’

Running averages
§ How do you compute the average of 1, 4, 7?
§ Method 1: add them up and divide by N

§ 1+4+7 = 12
§ average = 12/N = 12/3 = 4

§ Method 2: keep a running sum, or running mean µn, and a running count, n:
 µn = (sumn-1 + xn) / countn = ((n-1) × µn-1 + xn)/n

§ n=0 µ0=0
§ n=1 µ1 = (0 × µ0 + x1)/1 = (0 × 0 + 1)/1 = 1
§ n=2 µ2 = (1 × µ1 + x2)/2 = (1 × 1 + 4)/2 = 2.5
§ n=3 µ3 = (2 × µ2 + x3)/3 = (2 × 2.5 + 7)/3 = 4

§ Alternate formula:
 µn = [(n-1)/n] µn-1 + [1/n] xn (weighted average of old mean, new sample)

Running averages contd.

§ What if we use a weighted average with a fixed weight?
§ µn = (1-a) µn-1 + a xn
§ n=1 µ1 = x1

§ n=2 µ2 = (1-a) × µ1 + ax2 = (1-a) × x1 + ax2

§ n=3 µ3 = (1-a) × µ2 + ax3 = (1-a)2 × x1 + a(1-a)x2 + ax3

§ n=4 µ4 = (1-a) × µ3 + ax4 = (1-a)3 × x1 + a(1-a)2x2 + a(1-a)x3 + ax4

§ I.e., exponential forgetting of old values
§ µn is a convex combination of sample values (weights sum to 1)
§ E[µn] is a convex combination of E[Xi] values, hence unbiased

TD as approximate Bellman update

§ Experience transition i: (𝑠𝑖, 𝑎! , 𝑠!" 	, 𝑟𝑖).
§ Compute sampled value “target”: 𝑟! + 𝛾𝑉#(𝑠!").
§ Compute “TD error”: 𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .
§ Update with TD learning rule:

§ 𝑉# 𝑠$ ¬ 𝑉# 𝑠$ + a ⋅ 𝛿$.

§ Vp(s) ¬ Vp(s) + a × [target - Vp(s)]
§ Vp(s) ¬ (1-a) × Vp(s) + a × target
§ a is the learning rate

§ Observe a sample, move Vp(s) a little bit to make it more
consistent with its neighbor Vp (s’)

TD Learning Happens in the Brain!

§ Neurons transmit Dopamine to
encode reward or value prediction
error:
𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .

§ Example of Neuroscience & AI
informing each other

Problems with TD Value Learning

§ Model-free policy evaluation! 🎉
§ Bellman updates with running sample mean! 🎉

§ Need the transition model to improve the policy! 😱

s

s, a1 s, a2s, a0

Detour: Q-Value Iteration

§ Value iteration: find successive (depth-limited) values
§ Start with V0(s) = 0, which we know is right
§ Given Vk, calculate the depth k+1 values for all states:

§ But Q-values are more useful, so compute them instead
§ Start with Q0(s,a) = 0, which we know is right
§ Given Qk, calculate the depth (k+1) q-values for all q-states:

Q-learning as approximate Q-iteration

§ Recall the definition of Q values:
§ Q*(s,a) = expected return from doing a in s and then behaving optimally

thereafter; and p*(s) = maxaQ*(s,a)

§ Bellman equation for Q values:
§ Q*(s,a) = ås’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’)]

§ Approximate Bellman update for Q values:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γmaxa’Q (s’,a’)]

§ We obtain a policy from learned Q(s,a), with no model!
§ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Q-Learning

§ Learn Q(s,a) values as you go
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate: Q(s,a)
§ Consider your new sample estimate:

q_target = R(s,a,s’) + γ maxa’ Q(s’,a’)

§ Incorporate the new estimate into a running average:
 Q(s,a) ¬ (1-a) Q(s,a) + a × [q_target]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even
if samples are generated from a suboptimal policy!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate
 small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

Exploration vs. Exploitation

§ Exploration: try new things
§ Exploitation: do what’s best given what you’ve learned so far
§ Key point: pure exploitation often gets stuck in a rut and never

finds an optimal policy!

30

Exploration method 1: e-greedy

§ e-greedy exploration
§ Every time step, flip a biased coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Properties of e-greedy exploration
§ Every s,a pair is tried infinitely often
§ Does a lot of stupid things

§ Jumping off a cliff lots of times to make sure it hurts
§ Keeps doing stupid things for ever

§ Decay e towards 0

Demo Q-learning – Epsilon-Greedy – Crawler

Method 2: Optimistic Exploration Functions

§ Exploration functions implement this tradeoff
§ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g., f(u,n) = u + k/Ön

§ Regular Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxaQ (s’,a)]

§ Modified Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxa f(Q (s’,a’),n(s’,a’))]

§ Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Demo Q-learning – Exploration Function – Crawler

Approximate Q-Learning

Generalizing Across States

§ Basic Q-Learning keeps a table of all Q-values

§ In realistic situations, we cannot possibly learn
about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the Q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states from

experience
§ Generalize that experience to new, similar situations
§ Can we apply some machine learning tools to do this?

[demo – RL pacman]

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Demo Q-Learning Pacman – Tiny – Watch All

Demo Q-Learning Pacman – Tiny – Silent Train

Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations
§ Solution: describe a state using a vector of

features
§ Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

§ Example features:
§ Distance to closest ghost fGST
§ Distance to closest dot
§ Number of ghosts
§ 1 / (distance to closest dot) fDOT
§ Is Pacman in a tunnel? (0/1)
§ …… etc.

§ Can also describe a q-state (s, a) with features
(e.g., action moves closer to food)

Linear Value Functions

§ We can express V and Q (approximately) as weighted linear
functions of feature values:
§ Vw(s) = w1f1(s) + w2f2(s) + … + wnfn(s)
§ Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wnfn(s,a)

§ Advantage: our experience is summed up in a few powerful numbers
§ Can compress a value function for chess (1043 states) down to about 30 weights!

§ Disadvantage: states may share features but have very different expected utility!

Updating a linear value function

§ Original Q-learning rule tries to reduce prediction error at s,a:
§ Q(s,a) ¬ Q(s,a) + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

§ Instead, we update the weights to try to reduce the error at s,a:
§ wi ¬ wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] ¶Qw(s,a)/¶wi

 = wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] fi(s,a)
§ Intuitive interpretation:

§ Adjust weights of active features
§ If something bad happens, blame the features we saw; decrease value of

states with those features. If something good happens, increase value!

Example: Q-Pacman
Q(s,a) = 4.0 fDOT(s,a) – 1.0 fGST(s,a)

Q(s,a) = 3.0 fDOT(s,a) – 3.0 fGST(s,a)

s’s
fDOT(s,NORTH) = 0.5

fGST(s,NORTH) = 1.0

Q(s’,×) = 0 Q(s,NORTH) = +1
r + γ maxa’ Q (s’,a’) = – 500 + 0

difference = –501
wDOT ¬ 4.0 + a[–501]0.5
wGST ¬ –1.0 + a[–501]1.0

a = NORTH
 r = –500

Demo Approximate Q-Learning -- Pacman

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions

a. Direct evaluation
b. Temporal difference learning
c. Q-learning

3. Optimize the policy directly

Policy Search

Policy Search

§ Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they

still produced good decisions
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)

§ Solution: learn policies that maximize rewards, not the values that predict them

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
(or gradient ascent!) on feature weights

Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or Q-function
§ Nudge each feature weight up and down and see if your policy is better than before

§ Pros:
§ Works well for partial observability / stochastic policies

§ Cons:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

Policy Search

[Andrew Ng] [Video: HELICOPTER]

Summary

§ RL solves MDPs via direct experience of transitions and rewards
§ There are several approaches:

§ Learn the MDP model and solve it
§ Learn V directly from sums of rewards, or by TD local adjustments

§ Still need a model to make decisions by lookahead

§ Learn Q by local Q-learning adjustments, use it directly to pick actions
§ Optimize the policy directly

§ Scaling up with feature representations and approximation

