Announcements

- HW 10 due **Tuesday, April 23, 11:59 PM PT**
- Project 6 due **Friday, April 26, 11:59 PM PT**

- **Course evaluations are live!**
 - Log in at course-evaluations.berkeley.edu
 - Current response rate: 3%
 - Target response rate: 100%

Pre-scan attendance QR code now!
Recap: Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of **rewards**
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to **maximize expected rewards**
 - All learning is based on observed samples of outcomes!
Recap: Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) $A(s)$
 - A transition model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must explore new states and actions to discover how the world works
Recap: Offline (MDPs) vs. Online (RL)
Recap: Passive vs Active RL

Passive (fixed π) Active (changing π)
Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions
 a. Direct evaluation
 b. Temporal difference learning
 c. Q-learning

3. Optimize the policy directly
Temporal Difference Learning

- Passive setting (fixed policy π), like policy evaluation:
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

- Modifications:
 1. Don't know T or R; estimate expectation from samples!
 \[V^\pi(s) = \frac{1}{N} \sum_i \left[r_i + \gamma V^\pi(s'_i) \right] \]
 2. Update $V(s)$ after each transition (s, a, s', r) using running average.
 3. Decay older samples as new ones come in.
Example: TD Value Estimation

- Experience transition i: (s_i, a_i, s'_i, r_i).
- Compute sampled value “target”: $r_i + \gamma V^\pi (s'_i)$.
- Compute “TD error”: $\delta_i = (r_i + \gamma V^\pi (s'_i)) - V^\pi (s_i)$.
- Update: $V^\pi (s_i) \leftarrow V^\pi (s_i) + \alpha_i \cdot \delta_i$.

Example: TD Value Estimation

Input Policy π

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>C</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: TD Value Estimation

- Experience transition i: (s_i, a_i, s'_i, r_i).
- Compute sampled value “target”: $r_i + \gamma V^\pi(s'_i)$.
- Compute “TD error”: $\delta_i = (r_i + \gamma V^\pi(s'_i)) - V^\pi(s_i)$.
- Update: $V^\pi(s_i) += \alpha_i \cdot \delta_i$.

<table>
<thead>
<tr>
<th>s</th>
<th>$V(s)$</th>
<th>i</th>
<th>s</th>
<th>a</th>
<th>s'</th>
<th>r</th>
<th>$r + \gamma V^\pi(s')$</th>
<th>$V^\pi(s)$</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10
Example: TD Value Estimation

- Experience transition i: (s_i, a_i, s'_i, r_i).
- Compute sampled value “target”: $r_i + \gamma V^\pi(s'_i)$.
- Compute “TD error”: $\delta_i = (r_i + \gamma V^\pi(s'_i)) - V^\pi(s_i)$.
- Update: $V^\pi(s_i) += \alpha_i \cdot \delta_i$.

<table>
<thead>
<tr>
<th>i</th>
<th>s</th>
<th>a</th>
<th>s'</th>
<th>r</th>
<th>$r + \gamma V^\pi(s')$</th>
<th>$V^\pi(s)$</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>east</td>
<td>C</td>
<td>-1</td>
<td>-1 + 0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>east</td>
<td>D</td>
<td>-1</td>
<td>-1 + 0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>exit</td>
<td>---</td>
<td>10</td>
<td>10 + 0</td>
<td>0</td>
<td>+10</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>east</td>
<td>C</td>
<td>-1</td>
<td>-1 + -1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>east</td>
<td>D</td>
<td>-1</td>
<td>-1 + 10</td>
<td>-1</td>
<td>+9</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>exit</td>
<td>---</td>
<td>10</td>
<td>10 + 0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>north</td>
<td>C</td>
<td>-1</td>
<td>-1 + 9</td>
<td>0</td>
<td>+8</td>
</tr>
</tbody>
</table>

Example actions:
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10
Example: TD Value Estimation

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values
Temporal Difference Learning

- Passive setting (fixed policy π), like policy evaluation:
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]

- Modifications:
 1. Don’t know T or R; estimate expectation from samples!
 \[V^\pi(s) = \frac{1}{N} \sum_i [r_i + \gamma V^\pi(s'_i)] \]
 2. Update $V(s)$ after each transition (s,a,s',r) using running average.
 3. Decay older samples as new ones come in.
Running averages

- How do you compute the average of 1, 4, 7?
 - Method 1: add them up and divide by \(N \)
 - \(1+4+7 = 12 \)
 - average = \(\frac{12}{N} = \frac{12}{3} = 4 \)
 - Method 2: keep a running sum, or running mean \(\mu_n \), and a running count, \(n \):
 \[
 \mu_n = \frac{\text{sum}_{n-1} + x_n}{\text{count}_n} = \frac{(n-1) \cdot \mu_{n-1} + x_n}{n}
 \]
 - \(n=0 \) \(\mu_0 = 0 \)
 - \(n=1 \) \(\mu_1 = \frac{0 \cdot \mu_0 + x_1}{1} = \frac{0 \cdot 0 + 1}{1} = 1 \)
 - \(n=2 \) \(\mu_2 = \frac{1 \cdot \mu_1 + x_2}{2} = \frac{1 \cdot 1 + 4}{2} = 2.5 \)
 - \(n=3 \) \(\mu_3 = \frac{2 \cdot \mu_2 + x_3}{3} = \frac{2 \cdot 2.5 + 7}{3} = 4 \)
- Alternate formula:
 \[
 \mu_n = \left[\frac{(n-1)}{n}\right] \mu_{n-1} + \left[\frac{1}{n}\right] x_n \quad (\text{weighted average of old mean, new sample})
 \]
What if we use a weighted average with a fixed weight?

\[\mu_n = (1 - \alpha) \mu_{n-1} + \alpha x_n \]

- \(n=1 \) \(\mu_1 = x_1 \)
- \(n=2 \) \(\mu_2 = (1 - \alpha) \cdot \mu_1 + \alpha x_2 = (1 - \alpha) \cdot x_1 + \alpha x_2 \)
- \(n=3 \) \(\mu_3 = (1 - \alpha) \cdot \mu_2 + \alpha x_3 = (1 - \alpha)^2 \cdot x_1 + \alpha(1 - \alpha)x_2 + \alpha x_3 \)
- \(n=4 \) \(\mu_4 = (1 - \alpha) \cdot \mu_3 + \alpha x_4 = (1 - \alpha)^3 \cdot x_1 + \alpha(1 - \alpha)^2x_2 + \alpha(1 - \alpha)x_3 + \alpha x_4 \)

I.e., *exponential forgetting* of old values

- \(\mu_n \) is a convex combination of sample values (weights sum to 1)
- \(E[\mu_n] \) is a convex combination of \(E[X_i] \) values, hence unbiased
TD as approximate Bellman update

- Experience transition i: (s_i, a_i, s'_i, r_i).
- Compute sampled value “target”: $r_i + \gamma V^\pi(s'_i)$.
- Compute “TD error”: $\delta_i = (r_i + \gamma V^\pi(s'_i)) - V^\pi(s_i)$.
- Update with TD learning rule:
 - $V^\pi(s_i) \leftarrow V^\pi(s_i) + \alpha \cdot \delta_i$.
 - $V^\pi(s) \leftarrow V^\pi(s) + \alpha \cdot \text{[target - } V^\pi(s)]$
 - $V^\pi(s) \leftarrow (1-\alpha) \cdot V^\pi(s) + \alpha \cdot \text{target}$
 - α is the learning rate
- Observe a sample, move $V^\pi(s)$ a little bit to make it more consistent with its neighbor $V^\pi(s')$
TD Learning Happens in the Brain!

- Neurons transmit *Dopamine* to encode reward or value prediction error:
 \[\delta_i = (r_i + \gamma V^\pi(s'_i)) - V^\pi(s_i). \]

- Example of Neuroscience & AI informing each other

[A Neural Substrate of Prediction and Reward. Schultz, Dayan, Montague. 1997]
Problems with TD Value Learning

- Model-free policy evaluation! 😃
- Bellman updates with running sample mean! 🎉
- Need the transition model to improve the policy! 😨
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:

 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- **But Q-values are more useful, so compute them instead**
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $(k+1)$ q-values for all q-states:

 $$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$
Q-learning as approximate Q-iteration

- Recall the definition of Q values:
 - $Q^*(s,a) =$ expected return from doing a in s and then behaving optimally thereafter; and $\pi^*(s) = \max_a Q^*(s,a)$

- Bellman equation for Q values:
 - $Q^*(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma \max_{a'} Q^*(s',a')]$

- Approximate Bellman update for Q values:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$

- We obtain a policy from learned $Q(s,a)$, with no model!
 - (No free lunch: $Q(s,a)$ table is $|A|$ times bigger than $V(s)$ table)
Q-Learning

- Learn $Q(s,a)$ values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 \[q_{\text{target}} = R(s,a,s') + \gamma \max_{a'} Q(s',a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s,a) \leftarrow (1-\alpha) Q(s,a) + \alpha \cdot [q_{\text{target}}] \]
Video of Demo Q-Learning -- Gridworld
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if samples are generated from a suboptimal policy!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Exploration vs. Exploitation
Exploration vs. Exploitation

- **Exploration**: try new things
- **Exploitation**: do what’s best given what you’ve learned so far
- Key point: pure exploitation often gets *stuck in a rut* and never finds an optimal policy!
Exploration method 1: ϵ-greedy

- **ϵ-greedy exploration**
 - Every time step, flip a biased coin
 - With (small) probability ϵ, act randomly
 - With (large) probability $1-\epsilon$, act on current policy

- **Properties of ϵ-greedy exploration**
 - Every s,a pair is tried infinitely often
 - Does a lot of stupid things
 - Jumping off a cliff *lots of times* to make sure it hurts
 - Keeps doing stupid things for ever
 - Decay ϵ towards 0
Method 2: Optimistic Exploration Functions

- **Exploration functions** implement this tradeoff
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g., $f(u,n) = u + k/\sqrt{n}$

- Regular Q-update:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_a Q(s',a)]$

- Modified Q-update:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_a f(Q(s',a'),n(s',a'))]$

- Note: this propagates the “bonus” back to states that lead to unknown states as well!
Demo Q-learning – Exploration Function – Crawler
Approximate Q-Learning
Generalizing Across States

- Basic Q-Learning keeps a table of all Q-values

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the Q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - Can we apply some machine learning tools to do this?

[demo – RL pac]
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!
Demo Q-Learning Pacman – Tiny – Watch All
Demo Q-Learning Pacman – Tiny – Silent Train
Demo Q-Learning Pacman – Tricky – Watch All
Feature-Based Representations

- **Solution:** describe a state using a vector of *features*
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost f_{GST}
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{distance to closest dot}) f_{\text{DOT}}$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g., action moves closer to food)
Linear Value Functions

- We can express V and Q (approximately) as weighted linear functions of feature values:

 - $V_w(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$

 - $Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

- Advantage: our experience is summed up in a few powerful numbers
 - Can compress a value function for chess (10^{43} states) down to about 30 weights!

- Disadvantage: states may share features but have very different expected utility!
Updating a linear value function

- Original Q-learning rule tries to reduce prediction error at \(s, a\):
 \[
 Q(s, a) \leftarrow Q(s, a) + \alpha \cdot [R(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a)]
 \]

- Instead, we update the weights to try to reduce the error at \(s, a\):
 \[
 w_i \leftarrow w_i + \alpha \cdot [R(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a)] \frac{\partial Q_w(s, a)}{\partial w_i}
 = w_i + \alpha \cdot [R(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a)] f_i(s, a)
 \]

- Intuitive interpretation:
 - Adjust weights of active features
 - If something bad happens, blame the features we saw; decrease value of states with those features. If something good happens, increase value!
Example: Q-Pacman

\[Q(s,a) = 4.0 \, f_{\text{DOT}}(s,a) - 1.0 \, f_{\text{GST}}(s,a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[a = \text{NORTH} \]
\[r = -500 \]

\[Q(s', \cdot) = 0 \]

\[Q(s, \text{NORTH}) = +1 \]
\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[\text{difference} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha[-501]0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha[-501]1.0 \]

\[Q(s,a) = 3.0 \, f_{\text{DOT}}(s,a) - 3.0 \, f_{\text{GST}}(s,a) \]
Demo Approximate Q-Learning -- Pacman
1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions
 a. Direct evaluation
 b. Temporal difference learning
 c. Q-learning
3. Optimize the policy directly
Policy Search
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)

- Solution: learn policies that maximize rewards, not the values that predict them

- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing (or gradient ascent!) on feature weights
Policy Search

- **Simplest policy search:**
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- **Pros:**
 - Works well for partial observability / stochastic policies

- **Cons:**
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
Policy Search
Summary

- RL solves MDPs via direct experience of transitions and rewards
- There are several approaches:
 - Learn the MDP model and solve it
 - Learn V directly from sums of rewards, or by TD local adjustments
 - Still need a model to make decisions by lookahead
 - Learn Q by local Q-learning adjustments, use it directly to pick actions
 - Optimize the policy directly
- Scaling up with feature representations and approximation