Announcements

- HW 10 due Tuesday, April 23, 11:59 PM PT
- Project 6 due Friday, April 26, 11:59 PM PT

- Course evaluations are live!
 - Log in at <u>course-evaluations.berkeley.edu</u>
 - Current response rate: 3%
 - Target response rate: 100%

Pre-scan attendance QR code now!

CS 188: Artificial Intelligence Reinforcement Learning – Part 2

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Recap: Reinforcement Learning

Still assume a Markov decision process (MDP):

- A set of states s ∈ S
- A set of actions (per state) A(s)
- A transition model T(s,a,s')
- A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must explore new states and actions to discover how the world works

Recap: Offline (MDPs) vs. Online (RL)

Offline/Planning

Online/Learning

Recap: Passive vs Active RL

Passive (fixed π)

Active (changing π)

Approaches to reinforcement learning

✓ 1. Model-based: Learn the model, solve it, execute the solution

- 2. Learn values from experiences, use to make decisions
- 🗹 a. Direct evaluation
 - b. Temporal difference learning
 - c. Q-learning
- 3. Optimize the policy directly

Temporal Difference Learning

• Passive setting (fixed policy π), like policy evaluation: $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

Modifications:

1. Don't know T or R; estimate expectation from samples!

 $V^{\pi}(s) = \frac{1}{N} \sum_{i} [r_{i} + \gamma V^{\pi}(s_{i}')]$

2. Update V(s) after each transition (s,a,s',r) using running average.

3. Decay older samples as new ones come in.

- Experience transition *i*: (s_i, a_i, s'_i, r_i) .
- Compute sampled value "target": $r_i + \gamma V^{\pi}(s'_i)$.
- Compute "TD error": $\delta_i = (r_i + \gamma V^{\pi}(s'_i)) V^{\pi}(s_i)$.
- Update: $V^{\pi}(s_i) += \alpha_i \cdot \delta_i$.

- Experience transition *i*: (s_i, a_i, s'_i, r_i) .
- Compute sampled value "target": $r_i + \gamma V^{\pi}(s'_i)$.
- Compute "TD error": $\delta_i = (r_i + \gamma V^{\pi}(s'_i)) V^{\pi}(s_i)$.
- Update: $V^{\pi}(s_i) += \alpha_i \cdot \delta_i$.

V(s)

S

Α

Β

С

D

Ε

i	S	а	s'	r	$r + \gamma V^{\pi}(s')$	$V^{\pi}(\boldsymbol{s})$	δ
1							
2							
3							
4							
5							
6							
7							

 B, east, C, -1 C, east, D, -1 D, exit, x, +10
B, east, C, -1 C, east, D, -1 D, exit, x, +10
E, north, C, -1 C, east, D, -1 D, exit, x, +10
E , north, C , -1 C , east, A , -1

- Experience transition *i*: (s_i, a_i, s'_i, r_i) .
- Compute sampled value "target": $r_i + \gamma V^{\pi}(s'_i)$.
- Compute "TD error": $\delta_i = (r_i + \gamma V^{\pi}(s'_i)) V^{\pi}(s_i)$.
- Update: $V^{\pi}(s_i) += \alpha_i \cdot \delta_i$.

V(s)

0

-1

9

10

8

S

Α

Β

С

D

Ε

i	S	а	s'	r	$r + \gamma V^{\pi}(s')$	$V^{\pi}(\boldsymbol{s})$	δ
1	В	east	С	-1	-1 + 0	0	-1
2	С	east	D	-1	-1 + 0	0	-1
3	D	exit		10	10 + 0	0	+10
4	В	east	С	-1	-1 + -1	-1	-1
5	С	east	D	-1	-1 + 10	-1	+9
6	D	exit		10	10 + 0	10	0
7	Е	north	С	-1	-1 + 9	0	+8

B , east, C , -1
C , east, D , -1
D , exit, x , +10
B , east, C , -1
C , east, D , -1
D , exit, x , +10
E , north, C , -1
E , north, C , -1 C , east, D , -1
E, north, C, -1 C, east, D, -1 D, exit, x, +10
E, north, C, -1 C, east, D, -1 D, exit, x, +10 E, north, C, -1
 E, north, C, -1 C, east, D, -1 D, exit, x, +10 E, north, C, -1 C, east, A, -1

Temporal Difference Learning

• Passive setting (fixed policy π), like policy evaluation: $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

Modifications:

1. Don't know T or R; estimate expectation from samples!

 $V^{\pi}(s) = \frac{1}{N} \sum_{i} [r_{i} + \gamma V^{\pi}(s_{i}')]$

2. Update V(s) after each transition (s,a,s',r) using running average.

3. Decay older samples as new ones come in.

Running averages

- How do you compute the average of 1, 4, 7?
- Method 1: add them up and divide by N
 - 1+4+7 = 12
 - average = 12/N = 12/3 = 4
- Method 2: keep a running sum, or running mean μ_n , and a running count, n: $\mu_n = (sum_{n-1} + x_n) / count_n = ((n-1) \cdot \mu_{n-1} + x_n)/n$
 - n=0 μ₀=0
 - n=1 $\mu_1 = (0 \cdot \mu_0 + x_1)/1 = (0 \cdot 0 + 1)/1 = 1$
 - n=2 $\mu_2 = (1 \cdot \mu_1 + x_2)/2 = (1 \cdot 1 + 4)/2 = 2.5$
 - n=3 $\mu_3 = (2 \cdot \mu_2 + x_3)/3 = (2 \cdot 2.5 + 7)/3 = 4$
- Alternate formula:

 $\mu_n = [(n-1)/n] \mu_{n-1} + [1/n] x_n$ (weighted average of old mean, new sample)

Running averages contd.

- What if we use a weighted average with a fixed weight?
 - $\mu_n = (1-\alpha) \mu_{n-1} + \alpha x_n$
 - n=1 $\mu_1 = x_1$
 - n=2 μ_2 = (1- α) · μ_1 + αx_2 = (1- α) · x_1 + αx_2
 - n=3 $\mu_3 = (1-\alpha) \cdot \mu_2 + \alpha x_3 = (1-\alpha)^2 \cdot x_1 + \alpha (1-\alpha) x_2 + \alpha x_3$
 - $= n=4 \quad \mu_4 = \ (1-\alpha) \cdot \mu_3 + \alpha x_4 = \ (1-\alpha)^3 \cdot x_1 + \alpha (1-\alpha)^2 x_2 + \alpha (1-\alpha) x_3 + \alpha x_4$
- I.e., exponential forgetting of old values
- μ_n is a convex combination of sample values (weights sum to 1)
- $E[\mu_n]$ is a convex combination of $E[X_i]$ values, hence unbiased

TD as approximate Bellman update

- Experience transition *i*: (s_i, a_i, s'_i, r_i) .
- Compute sampled value "target": $r_i + \gamma V^{\pi}(s'_i)$.
- Compute "TD error": $\delta_i = (r_i + \gamma V^{\pi}(s'_i)) V^{\pi}(s_i)$.
- Update with TD learning rule:
 - $V^{\pi}(s_i) \leftarrow V^{\pi}(s_i) + \alpha \cdot \delta_i$.
 - $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \cdot [target V^{\pi}(s)]$
 - $V^{\pi}(s) \leftarrow (1-\alpha) \cdot V^{\pi}(s) + \alpha \cdot target$
 - α is the *learning rate*
- Observe a sample, move V^π(s) a little bit to make it more consistent with its neighbor V^π(s')

TD Learning Happens in the Brain!

 Neurons transmit *Dopamine* to encode reward or value prediction error:

 $\delta_i = \left(r_i + \gamma V^{\pi}(s_i')\right) - V^{\pi}(s_i).$

 Example of Neuroscience & Al informing each other

Problems with TD Value Learning

- Model-free policy evaluation!
- Bellman updates with running sample mean!

Need the transition model to improve the policy!

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V₀(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_k, calculate the depth (k+1) q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-learning as approximate Q-iteration

- Recall the definition of Q values:
 - Q^{*}(s,a) = expected return from doing a in s and then behaving optimally thereafter; and π^{*}(s) = max_aQ^{*}(s,a)
- Bellman equation for Q values:
 - $Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma \max_{a'} Q^*(s',a')]$
- Approximate Bellman update for Q values:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma max_{a'}Q(s',a')]$
- We obtain a policy from learned Q(s,a), with no model!
 - (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Q-Learning

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s,a)
 - Consider your new sample estimate: *q* target = R(s,a,s') + y max_a, Q(s',a')
 - Incorporate the new estimate into a running average: $Q(s,a) \leftarrow (1-\alpha) Q(s,a) + \alpha \cdot [q_target]$

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if samples are generated from a suboptimal policy!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Exploration vs. Exploitation

Exploration vs. Exploitation

- **Exploration**: try new things
- **Exploitation**: do what's best given what you've learned so far
- Key point: pure exploitation often gets stuck in a rut and never finds an optimal policy!

Exploration method 1: E-greedy

E-greedy exploration

- Every time step, flip a biased coin
- With (small) probability ε, act randomly
- With (large) probability $1-\varepsilon$, act on current policy

Properties of *ɛ*-greedy exploration

- Every s,a pair is tried infinitely often
- Does a lot of stupid things
 - Jumping off a cliff *lots of times* to make sure it hurts
- Keeps doing stupid things for ever
 - Decay ɛ towards 0

Demo Q-learning – Epsilon-Greedy – Crawler

Method 2: Optimistic Exploration Functions

- **Exploration functions** implement this tradeoff
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g., $f(u,n) = u + k/\sqrt{n}$
- Regular Q-update:

- $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_a Q(s',a)]$
- Modified Q-update:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_a f(Q(s',a'),n(s',a'))]$
- Note: this propagates the "bonus" back to states that lead to unknown states as well!

Demo Q-learning – Exploration Function – Crawler

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all Q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the Q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - Can we apply some machine learning tools to do this?

[demo – RL pacman]

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Demo Q-Learning Pacman – Tiny – Watch All

Demo Q-Learning Pacman – Tiny – Silent Train

Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of <u>features</u>
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost f_{GST}
 - Distance to closest dot
 - Number of ghosts
 - 1 / (distance to closest dot) f_{DOT}
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g., action moves closer to food)

Linear Value Functions

- We can express V and Q (approximately) as weighted linear functions of feature values:
 - $V_w(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$
 - $Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + ... + w_n f_n(s,a)$
- Advantage: our experience is summed up in a few powerful numbers
 - Can compress a value function for chess (10⁴³ states) down to about 30 weights!
- Disadvantage: states may share features but have very different expected utility!

Updating a linear value function

- Original Q-learning rule tries to reduce prediction error at s,a:
 Q(s,a) ← Q(s,a) + α · [R(s,a,s') + γ max_{a'} Q (s',a') Q(s,a)]
- Instead, we update the weights to try to reduce the error at s,a:
 - $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') Q(s,a)] \partial Q_w(s,a) / \partial w_i$

 $= \mathbf{w}_{i} + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] \mathbf{f}_{i}(s,a)$

- Intuitive interpretation:
 - Adjust weights of active features
 - If something bad happens, blame the features we saw; decrease value of states with those features. If something good happens, increase value!

Example: Q-Pacman

Q(s,NORTH) = +1r + $\gamma \max_{a'} Q(s',a') = -500 + 0$ $Q(s',\cdot)=0$

difference = -501 $W_{DOT} \leftarrow 4.0 + \alpha[-501]0.5$ $w_{GST} \leftarrow -1.0 + \alpha[-501]1.0$

 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

Demo Approximate Q-Learning -- Pacman

Approaches to reinforcement learning

- 1. Model-based: Learn the model, solve it, execute the solution
- 2. Learn values from experiences, use to make decisions
 - a. Direct evaluation
 - b. Temporal difference learning
 - c. Q-learning

3. Optimize the policy directly

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing (or gradient ascent!) on feature weights

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Pros:
 - Works well for partial observability / stochastic policies
- Cons:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

[Video: HELICOPTER]

[Andrew Ng]

Summary

- RL solves MDPs via direct experience of transitions and rewards
- There are several approaches:
 - Learn the MDP model and solve it
 - Learn V directly from sums of rewards, or by TD local adjustments
 - Still need a model to make decisions by lookahead
 - Learn Q by local Q-learning adjustments, use it directly to pick actions
 - Optimize the policy directly
- Scaling up with feature representations and approximation