Announcements

" Final project due Friday, Apr 26, 11:59pm PT
= Review session details — see Ed

= Course evaluations!

" Log in at course-evaluations.berkeley.edu

= Current response rate: 19%
= Target response rate: 100%
= Final exam +1% unlocks at: >70% (by May 5t)

(=] 3 [m]

[=]

Pre-scan attendance
QR code now!




CS 188: Artificial Intelligence

Instructors: Cameron Allen and Michael Cohen --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
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Ketrina Yim
CS188 Artist
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Today’s Al
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How can | help you today?

What can I help you with today?

@ Message ChatGPT... Message Claude...

Claude 3 Opus ~




Large Language Models

= Feature engineering
= Text tokenization

" Word embeddings

= Deep neural networks
= Autoregressive models
= Self-attention mechanisms
" Transformer architecture

» Multi-class classification

Supervised learning

= Self-supervised learning
= |nstruction tuning

Reinforcement learning
= ... from human feedback (RLHF)

Policy search
= Policy gradient methods

Beam search



Deep Neural Networks
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= |nput: some text

" “The dog chased the”

= Qutput: more text

" |[mplementation:

" Linear algebra
= How??

.. " ball”



Text Tokenization

GPT-35& GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing

the underlying bytes: ¥

Sequences of characters commonly found next to each other may be grouped
together: 1234567890

Clear Show example

Tokens Characters

o7 252

https://platform.openai.com/tokenizer



Text Tokenization

GPT-35& GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing
the underlying bytes: 666660

Sequences of characters commonly found next to each other may be grouped
together: 1234567890

Text Token IDs

Tokens Characters

o7 252

https://platform.openai.com/tokenizer



Text Tokenization

GPT-35& GPT-4 GPT-3 (Legacy)

[8607, 4339, 2472, 311, 832, 4037, 11, 719, 1063, 1541, 956, 25, 3687,
23936, 382, 35020, 5885, 1093, 100166, 1253, 387, 6859, 1139, 1690,
11460, 8649, 279, 16940, 5943, 25, 11410, 97, 248, 9468, 237, 122, 271,
1542, 45045, 315, 5885, 17037, 1766, 1828, 311, 1855, 1023, 1253, 387,
41141, 3871, 25, 220, 4513, 10961, 16474, 15]

Text Token IDs

Tokens Characters

o7 252

https://platform.openai.com/tokenizer



Word Embeddings

= |nput: some text

= “The” tokenize
= “dog” tokenize
. tokenize
. tokenize

= Qutput: more text

= “hall” <un-tokenize

one-hot
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What do word embeddings look like?

= Words cluster by similarity: R s
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ig.ft.com/generative-ai



What do word embeddings look like?

" Features learned in language models:

JIITE 1IN
- HEER TR INERE

ig.ft.com/generative-ai



What do word embeddings look like?

" Signs of sensible algebra in embedding space:
king

king - man

man

womarn

king - man + woman = queen

[Efficient estimation of word representations in vector space, Mikolov et al, 2013]



Aside: interactive explainer of modern language models

ig.ft.com/generative-ai

Artificial Intelligence

Generative Al exists
because of the transformer

-------------------------------------------------------------------------------------------------------

_______________________________________________________________________________________________________

By Visual Storytelling Team and Madhumita Murgia in London SEPTEMBER 112023



Large Language Models

= Deep neural networks
= Autoregressive models
= Self-attention mechanisms
* Transformer architectures

» Multi-class classification

Supervised learning

= Self-supervised learning
= |nstruction tuning

Reinforcement learning
= ... from human feedback (RLHF)

Policy search
= Policy gradient methods

Beam search



Autoregressive Models




Autoregressive Models

Predict output one piece at a time (e.g. word, token, pixel, etc.)
Concatenate: input + output

Feed result back in as new input

Repeat




Self-Attention Mechanisms




Self-Attention Mechanisms

" |nstead of conditioning on
all input tokens equally...

= Pay more attention to
relevant tokens!




Self-Attention Mechanisms

ig.ft.com/generative-ai
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Multi-Headed Attention
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Multi-Headed Attention
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

https://github.com/jessevig/bertviz



Multi-Headed Attention

Head 4: pronoun references
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
she
took
his
hand
in
hers

[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Transformer Architecture




Transformer Architecture
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Transformer Architecture
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Large Language Models

Supervised learning

= Self-supervised learning
= |nstruction tuning

Reinforcement learning
= ... from human feedback (RLHF)

Policy search
= Policy gradient methods

Beam search



Unsupervised / Self-Supervised Learning

" Do we always need human supervision to learn features?

" Can’t we learn general-purpose features?

" Key hypothesis:

Task 1

Task 2

IF neural network smart enough to predict:
= Next frame in video
= Next word in sentence
= Generate realistic images

" "Translate” images

THEN same neural network is ready to do Supervised Learning from a
very small data-set



in

Transfer from Unsupervised Learning

/ X Task 1 = unsupervised
\ 1 L, Task 2 = real task




text

Example Setting

Task 1 = predict next word

«

Task 2 = predict sentiment




Image Pre-Training: Predict Missing Patch




Pre-Training and Fine-Tuning

Pre-Train: train a large model with a lot of data on a self-
supervised task

» Predict next word / patch of image

» Predict missing word / patch of image

" Predict if two images are related (contrastive learning)

Fine-Tune: continue training the same model on task you care
about



Instruction Tuning

Task 1 = predict next word

(learns to mimic human-written text)

" Query: “What is population of Berkeley?”

" Human-like completion: “This question always fascinated me!”

Task 2 = generate helpful text

" Query: “What is population of Berkeley?”

" Helpful completion: "It is 117,145 as of 2021 census.”

Fine-tune on collected examples of helpful human conversations

Also can use Reinforcement Learning



Reinforcement Learning from Human Feedback

= MDP:

= State: sequence of words seen so far (ex. “what is population of Berkeley? ”)

= 100,000%990 possible states
= Huge, but can be processed with feature vectors or neural networks

= Action: next word (ex. “1t”, “chair”, “purple”,...) (so 100,000 actions)

= Hard to compute max Q(s’, a) when max is over 100K actions!
a

" Transition T: easy, just append action word to state words
" 5: "My name“ a:“is“ §’:“My name is™
= Reward R: ??7?

= Humans rate model completions (ex. “What is population of Berkeley? ”)
= “"Tt is 117,145%: +1 “It is H5%: -1 “Destroy all humans™“: -1

= Learn a reward model R and use that (model-based RL)

= Commonly use policy search (proximal policy optimization) but looking into Q Learning



Large Language Models

=_Lagture-engineering cSggepasedlearatrg
=_Teoxttokenization =_Self-supervisedlearning
=_\Word-embeddings =_|astryctionturiAg

= Deep-neuralnetworks = Reinforcementlearning
=_Aytoregressive meodels *_from-humanfeedback{REHF
=_Self-attention-mechanicms = Policy search
=*—transtormerarchitectures = Policy gradient methods

'—M—H—l—tkel'a'ss—el'a'&ﬂ'ﬂ'ea%l'eﬂ' = Beam Search



Policy Search




Policy Gradient Methods

1. Initialize policy Ty somehow
2. Estimate policy performance: J(8) = V™0 (s,)

3. Improve policy:
= Hill climbing
= Change 0, evaluate new policy, keep if better

" Gradient ascent
= Estimate Vy J(6), change 6 to ascend gradient: ;.1 = 0;, + a VgJ(6},)

4. Repeat



Estimating the Policy Gradient

Define the advantage function: A™(s,a) = Q™(s,a) — V™(s)
Note that expected TD error equals expected advantage:

Er[8:] = Exlre + YV (se41) — VT (se)] = E[Q™ (s, ar) — VT (se)]
Policy Gradient Theorem:

" Let 7 denote a trajectory from an arbitrary episode

" Vo) (0) = Eqpy |2t A7 (50, )V log mg (acls,) |
Estimate Vg, ](9)

= Vo/(0) = _Z 121; lo(rt + YV (Se41) — V”(St))Vg logmg (a;ls;)



Large Language Models

= Beam search



Beam Search

Random restarts



Beam Search

Parallel search Beam search



Beam Search
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Large Language Models
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Language models build a structured concept space
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Can other data (images/audio/...) be put in this space?
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Can we build a single model of all data types?

example from [Tsimpoukelli et al, 2021]

Main Source for News

nnnnnnnnn

What is the fastest-growing news source according to 7&& ?

000000000000000000000000000




Can we build a single model of all data types?

Mobile Manipulation

Human: Bring me the rice chips from the
drawer. Robot: 1. Go to the drawers, 2. Open
top drawer. | see <img>. 3. Pick the green rice
chip bag from the drawer and place it on the
counter.

Visual Q&A, Captioning ...

Given <img>. Q: What's in the

B image? Answer in emojis.

J>,909048.

PaLM-E: An Embodied Multimodal Language Model

Given <emb> ...

?

<img> Q: How to grasp blue block? A: First, grasp yellow block

ViT

Large Language Model (PaLM)

Control

Describe the following

<img>
A dog jumping over a
hurdle at a dog show.

Task and Motion Planning

@ Given <emb> Q: How
to grasp blue block?
A: First grasp yellow
block and place it on
the table, then grasp
the blue block.

Tabletop Manipulation

Given <img> Task: Sort
colors into corners.
Step 1. Push the green
star to the bottom left.
Step 2. Push the green
Language Only Tasks circle to the green star.

A: First, grasp yellow block and ...

Q: Miami Beach borders which ocean? A: Atlantic. Q: What is 372 x 18?7 A: 6696.Q: Write a
Haiku about embodied LLMs. A: Embodied language. Models learn to understand.
The world around them.

[PaLM-E, Driess et al, 2023]



Tracking Progress

gpt-4 [

gpt-4 (no vision)

Exam results (ordered by GPT-3.5 performance)

gpt3.5 W

Estimated percentile lower bound (among test takers)
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Forecasting Progress

" Scaling Laws extrapolate:
* |f we [make model bigger / add more data / ...]

= What would accuracy become?

Validation Loss

compute:

2
________ L=2_57.c—0.048
15 ] ]
10°° 107 107 10° 10°

Compute (PetaFLOP/s-days)
[Brown et al, 2020]

10

N
o
©

-10°
10
-10°

-10

Parameters

test loss

data:

Visual Explanation of Effective Data Transferred

0 —e— pre-trained on text
4x10 trained from scratch
3x10°

Dg,Total Effective Data
2 x10° ine-tuni i
DF,Flne tuning DT, Effective Data
dataset Transfered
100 4
\\.\w
104 10° 10° 107 108 10° 1010

python characters in dataset

[Hernandez et al, 2021]




Forecasting Progress

" Scaling Laws extrapolate:

* |f we [make model bigger / add more data / ...]

= What would accuracy become?

" But some capabilities emerge

unexpectedly

[Brown et al, 2020]
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What will be Al’s impact in the future?

You get to determine that!

As researchers / developers
As auditors and regulators
As informed public voices

As you apply Al



Where to go next?




Where to go next?

= Congratulations, you’ve seen the basics of modern Al
= ...and done some amazing work putting it to use!

= How to continue:
= Machine learning: cs189, cs182, stat154, ind. eng. 142
= Data Science: datal00, data 102
= Data Ethics: data c104
= Probability: ee126, stat134
= Optimization: eel27
= Cognitive modeling: cog sci 131
= Machine learning theory: cs281a/b
= Computer vision: cs280
= Deep RL: ¢s285
= NLP:cs288
= Special topics: cs194-?
= ... and more; ask if you're interested




Reminder: Course Evals
" Help us out with some course evaluations please!

= Review session details — see Ed






