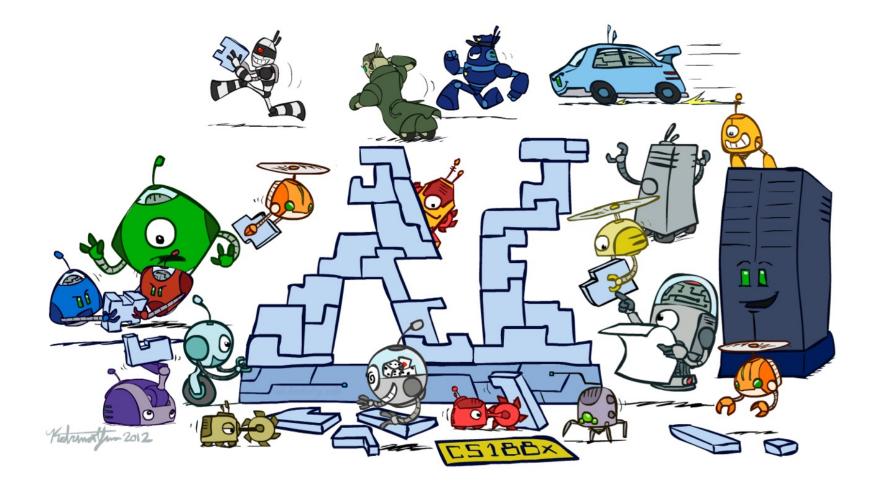
Announcements

- Final project due Friday, Apr 26, 11:59pm PT
- Review session details see Ed

- Course evaluations!
 - Log in at <u>course-evaluations.berkeley.edu</u>
 - Current response rate: 19%
 - Target response rate: 100%
 - Final exam +1% unlocks at: >70% (by May 5th)

Pre-scan attendance QR code now!

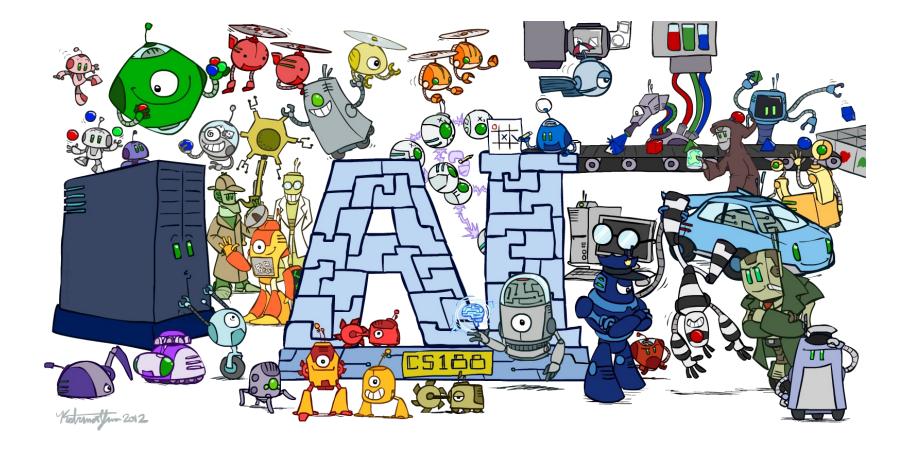
CS 188: Artificial Intelligence



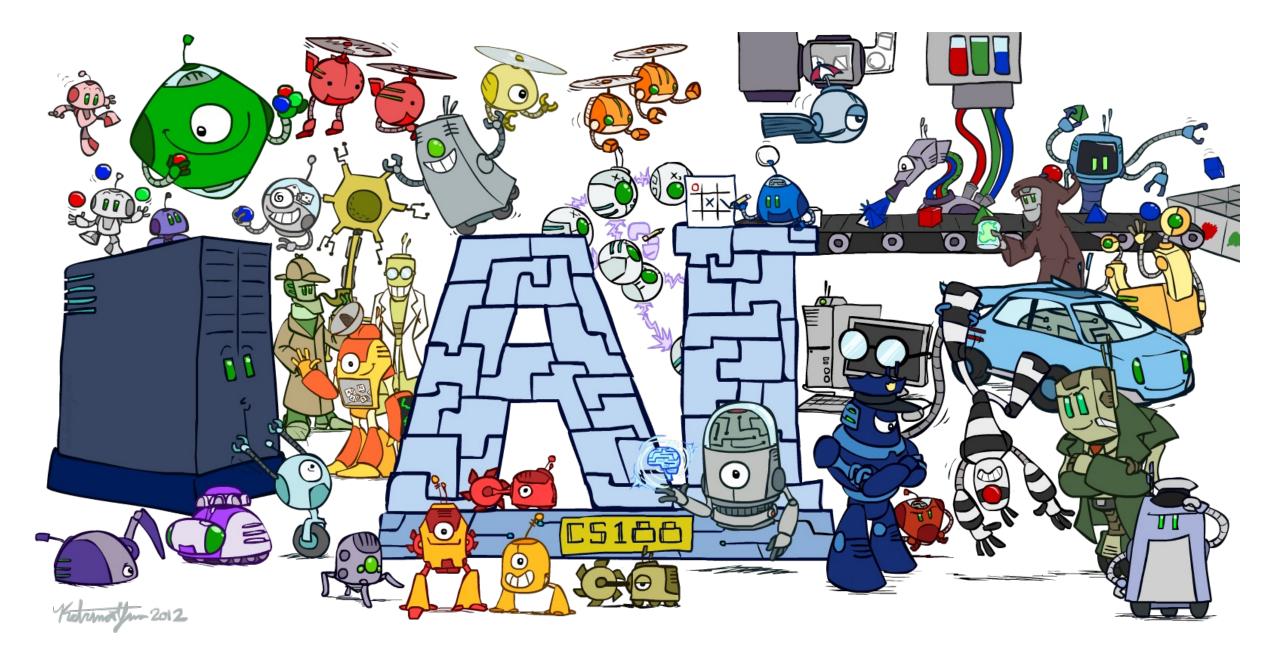
Instructors: Cameron Allen and Michael Cohen --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Special Thanks



Ketrina Yim CS188 Artist



Today's Al

- ChatGPT 4 ~ (Ľ	A۱	Untitled ~	•
Solution How can I help you today?			*** What can I help you with today?	
Message ChatGPT		Mess	age Claude	Ø
ChatGPT can make mistakes. Consider checking important information.		Claud	e 3 Opus ~	

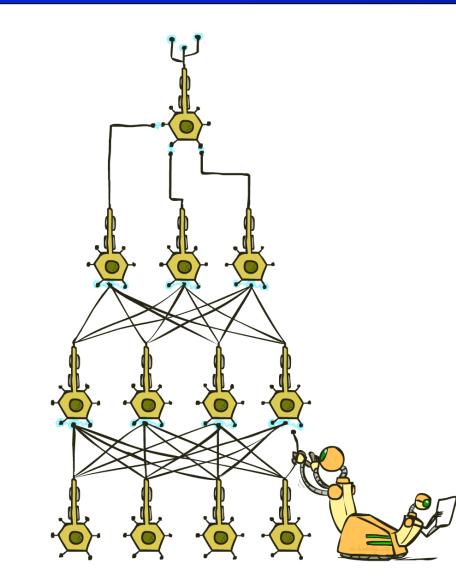
Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architecture
- Multi-class classification

Supervised learning

- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Deep Neural Networks



- Input: some text
 - "The dog chased the"
- Output: more text
 - ... " ball"
- Implementation:
 - Linear algebra
 - How??

Text Tokenization

GPT-3.5 & GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing the underlying bytes: ****

Sequences of characters commonly found next to each other may be grouped together: 1234567890

https://platform.openai.com/tokenizer

///

Text Tokenization

GPT-3.5 & GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing the underlying bytes: 000000

Sequences of characters commonly found next to each other may be grouped together: 1234567890

Text Token IDs

https://platform.openai.com/tokenizer

Text Tokenization

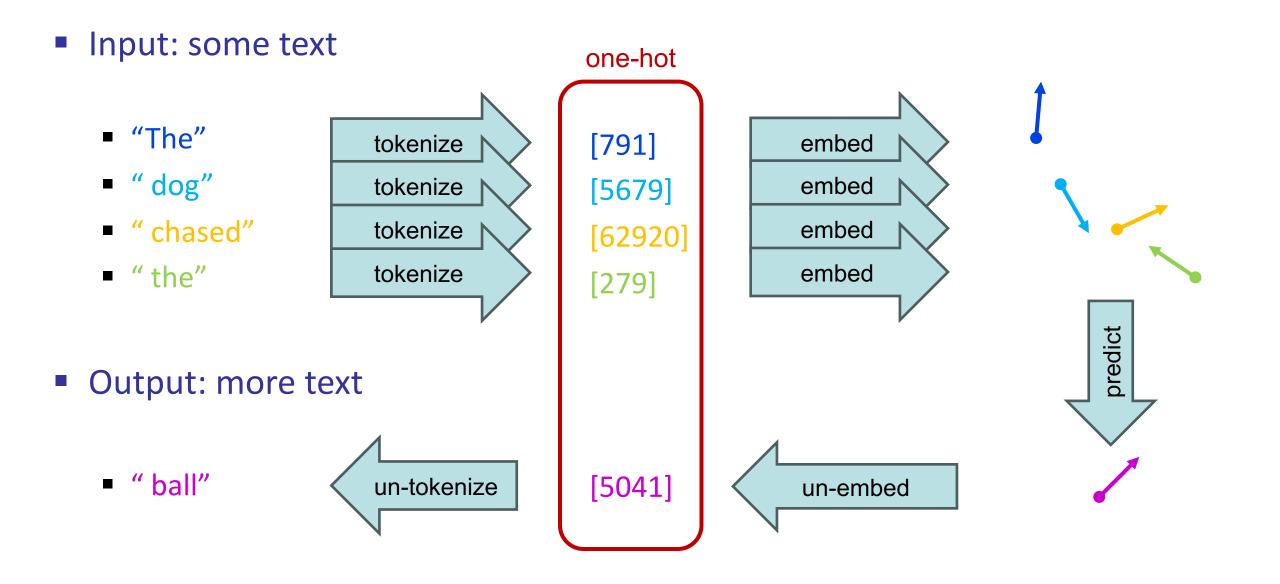
GPT-3.5 & GPT-4 GPT-3 (Legacy)

[8607, 4339, 2472, 311, 832, 4037, 11, 719, 1063, 1541, 956, 25, 3687, 23936, 382, 35020, 5885, 1093, 100166, 1253, 387, 6859, 1139, 1690, 11460, 8649, 279, 16940, 5943, 25, 11410, 97, 248, 9468, 237, 122, 271, 1542, 45045, 315, 5885, 17037, 1766, 1828, 311, 1855, 1023, 1253, 387, 41141, 3871, 25, 220, 4513, 10961, 16474, 15]

Text Token IDs

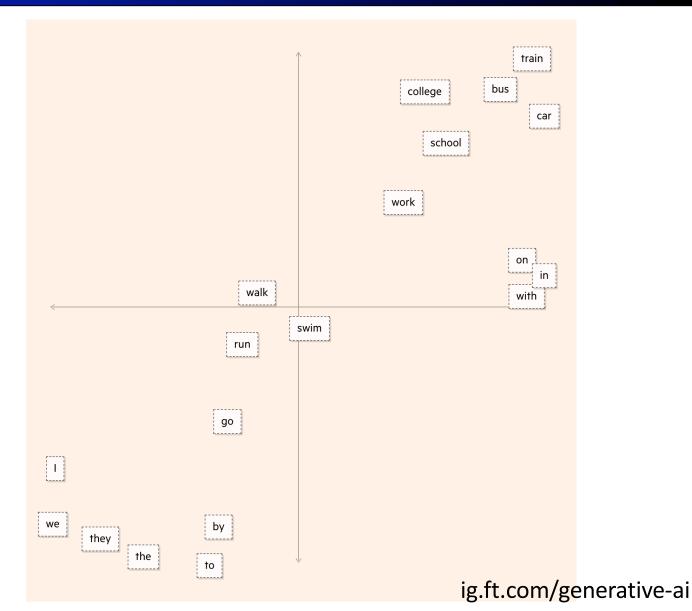
https://platform.openai.com/tokenizer

Word Embeddings



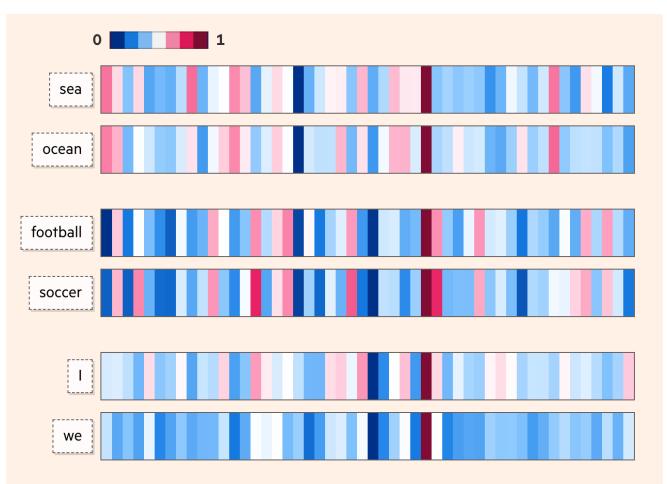
What do word embeddings look like?

Words cluster by similarity:



What do word embeddings look like?

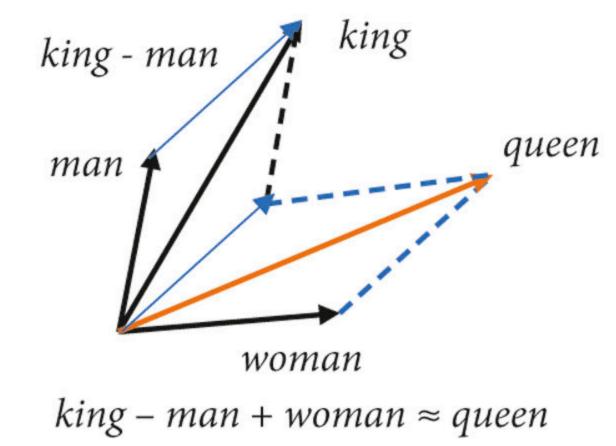
Features learned in language models:



ig.ft.com/generative-ai

What do word embeddings look like?

Signs of sensible algebra in embedding space:



[Efficient estimation of word representations in vector space, Mikolov et al, 2013]

Aside: interactive explainer of modern language models

ig.ft.com/generative-ai

Artificial Intelligence

Generative AI exists because of the transformer

This is how it works

By Visual Storytelling Team and Madhumita Murgia in London SEPTEMBER 11 2023

Large Language Models

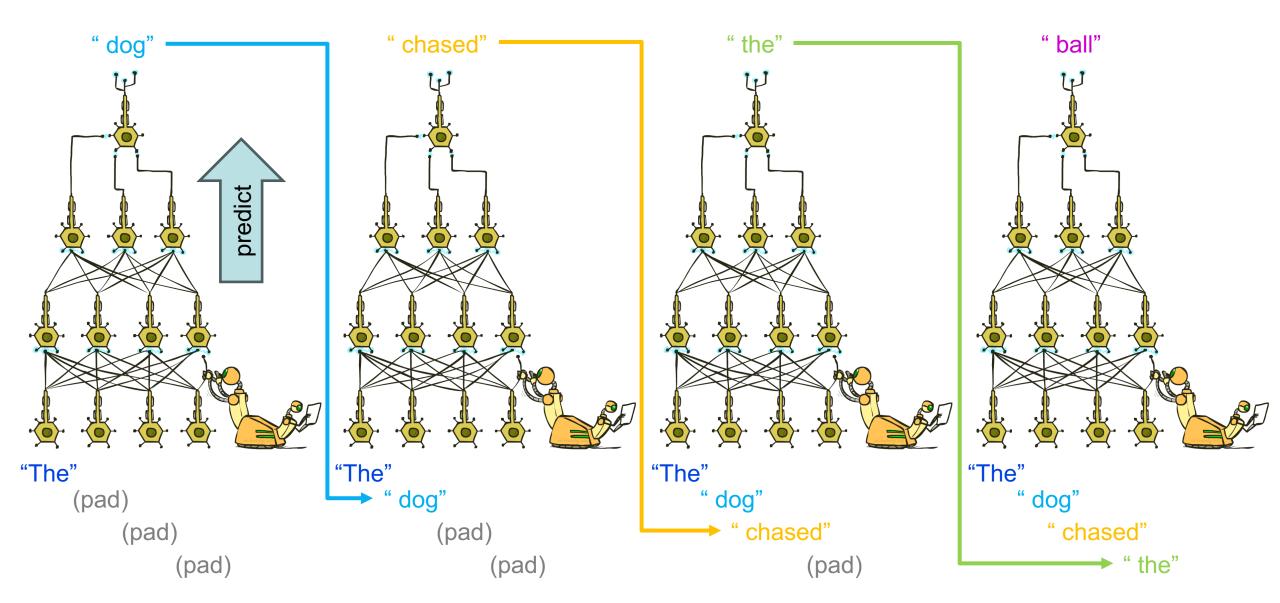
Feature engineering

- Text tokenization
- Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

Supervised learning

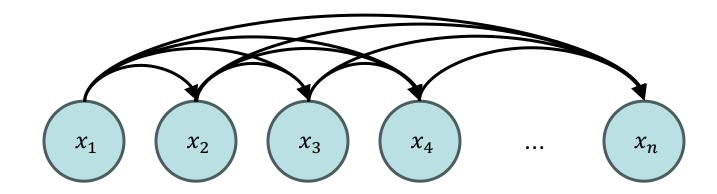
- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Autoregressive Models

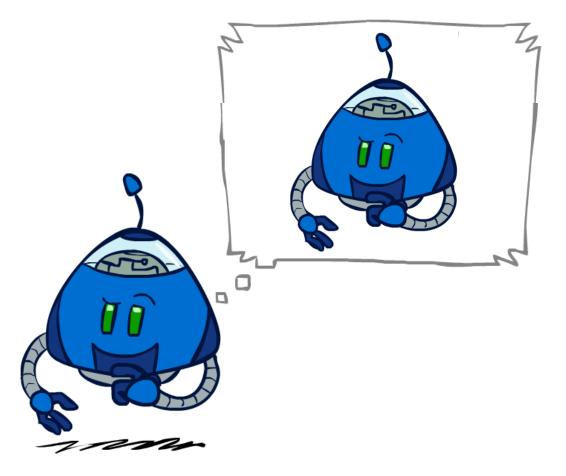


Autoregressive Models

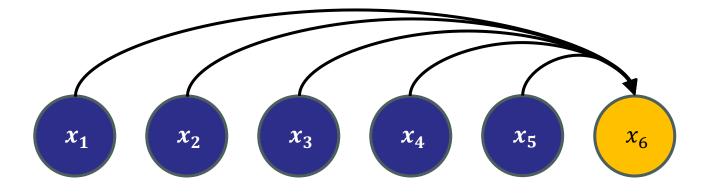
- Predict output one piece at a time (e.g. word, token, pixel, etc.)
- Concatenate: input + output
- Feed result back in as new input



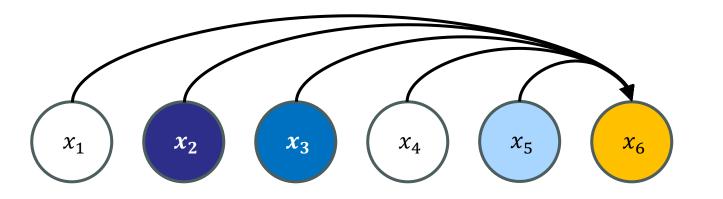
Self-Attention Mechanisms



Self-Attention Mechanisms

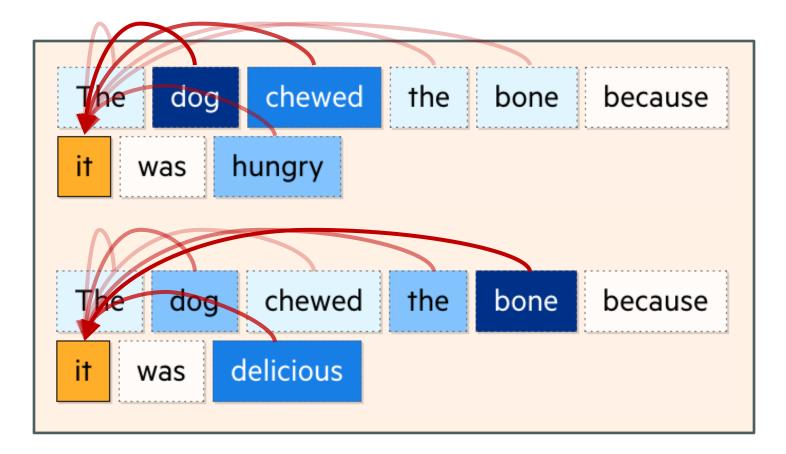


 Instead of conditioning on all input tokens equally...

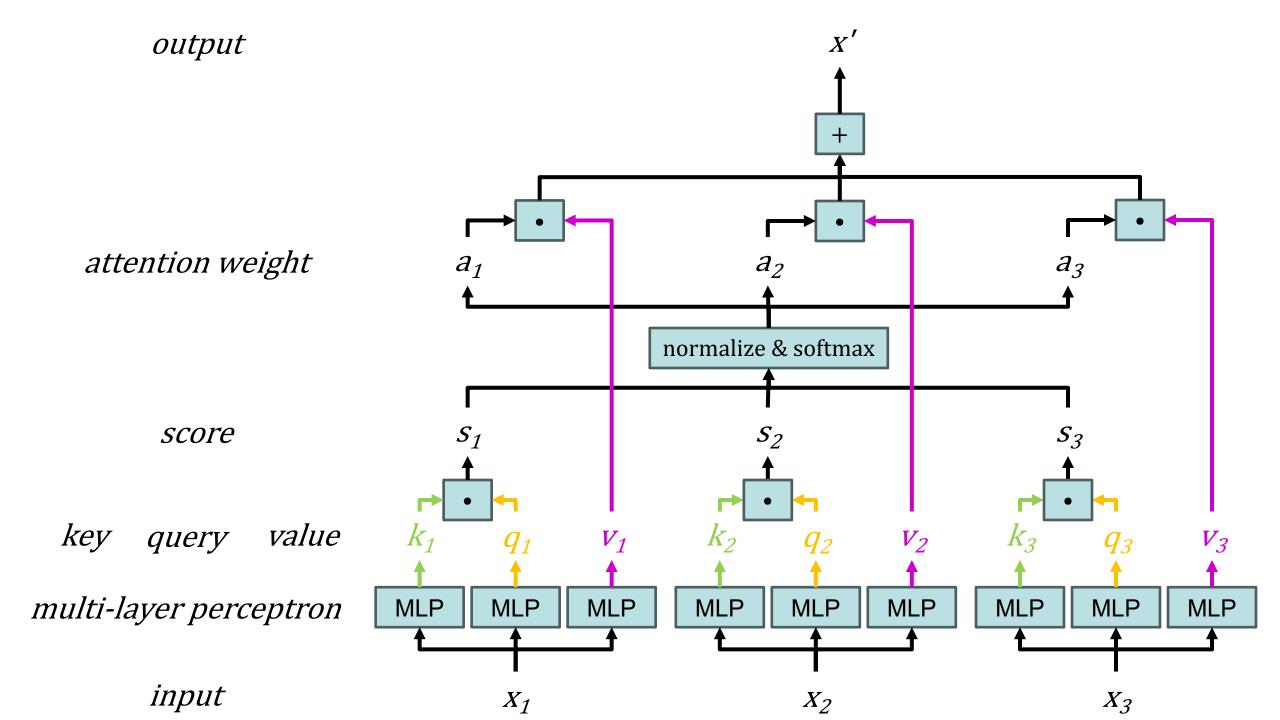


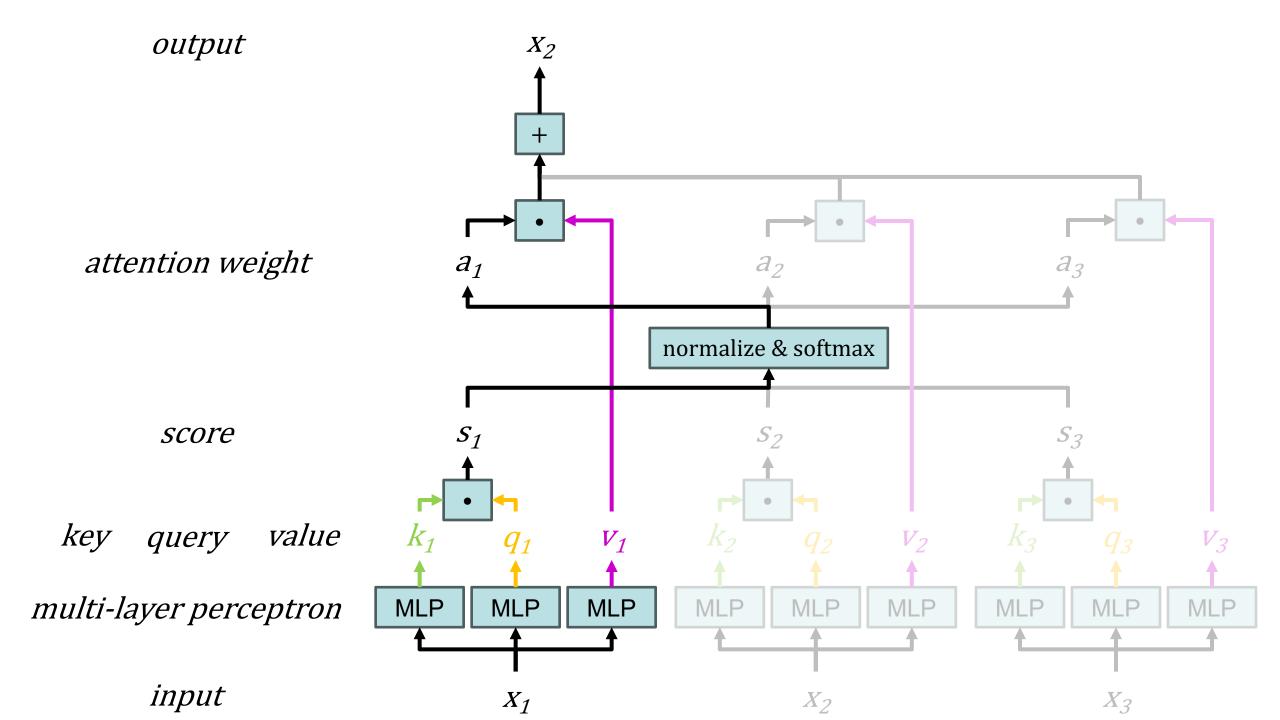
Pay more attention to relevant tokens!

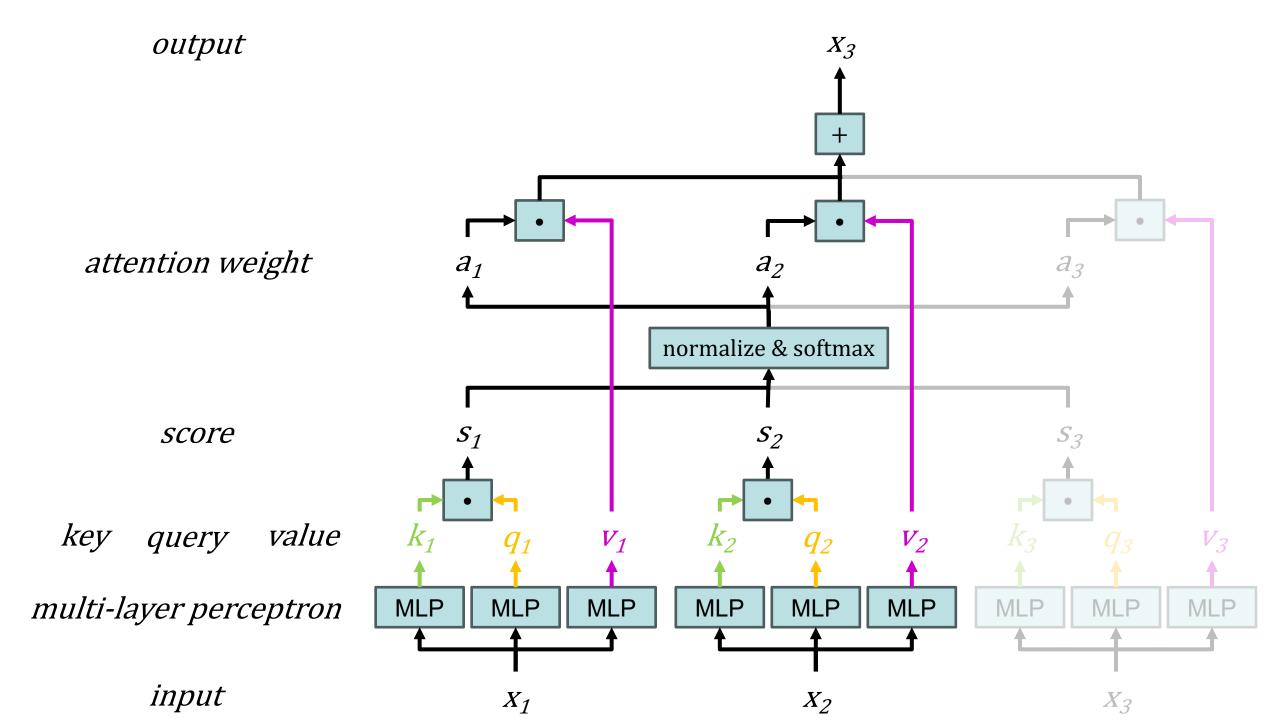
Self-Attention Mechanisms

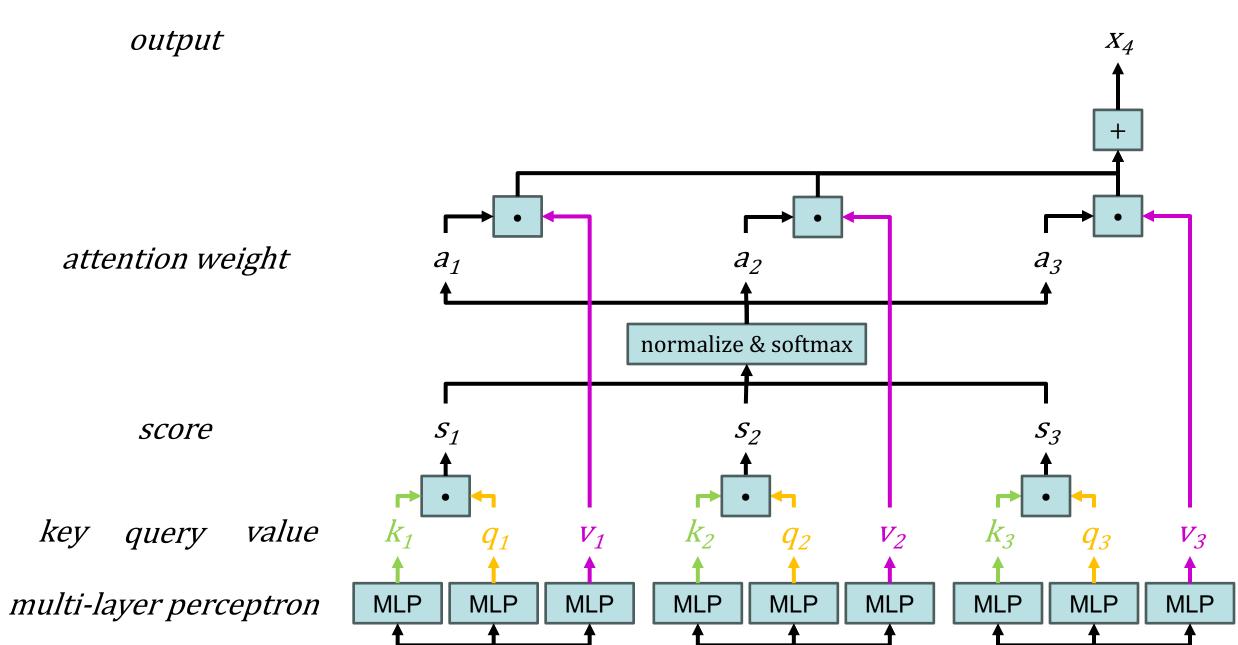


ig.ft.com/generative-ai



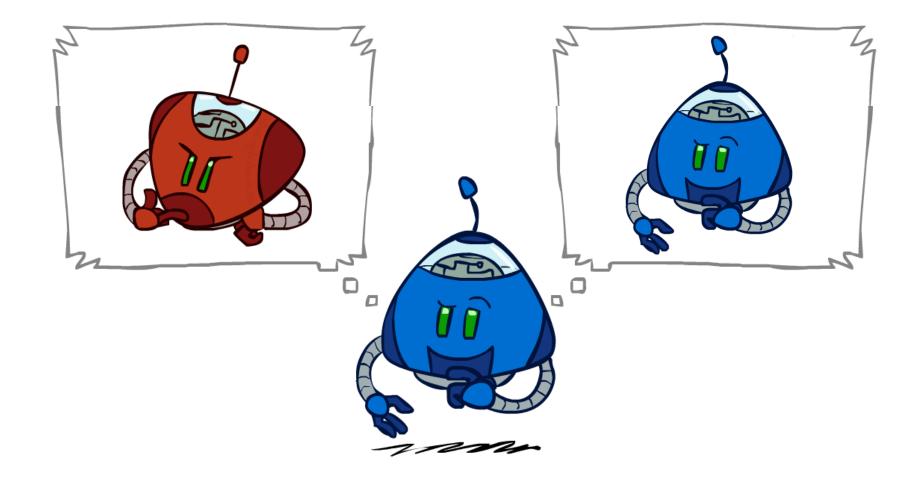


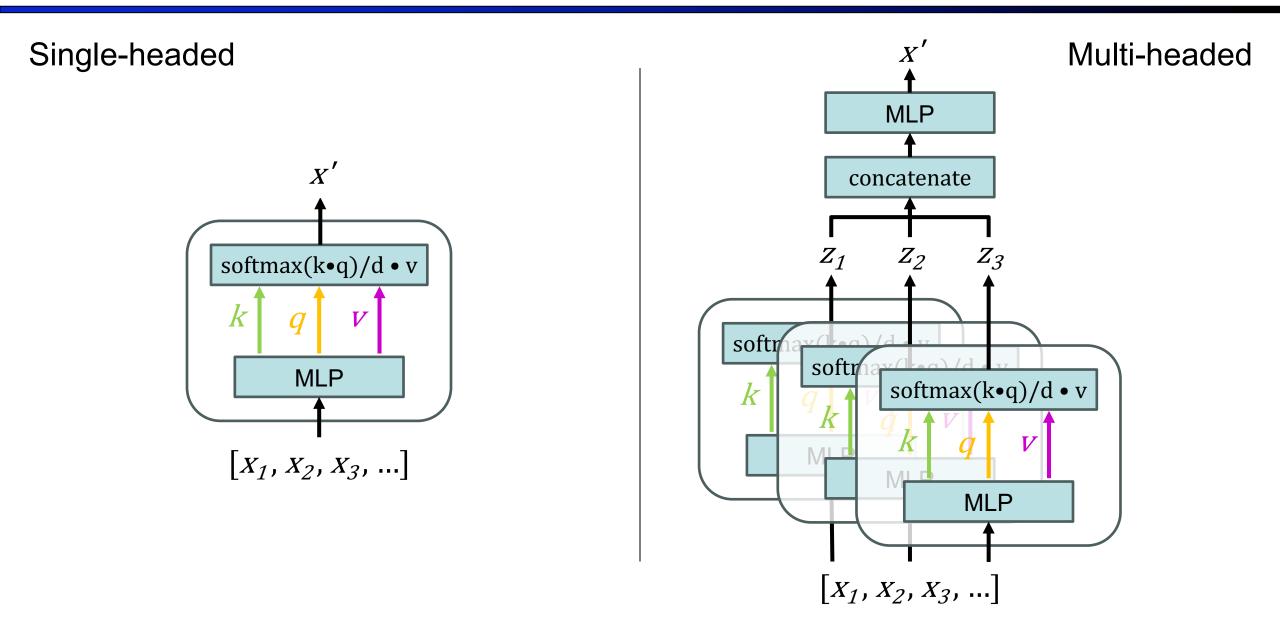




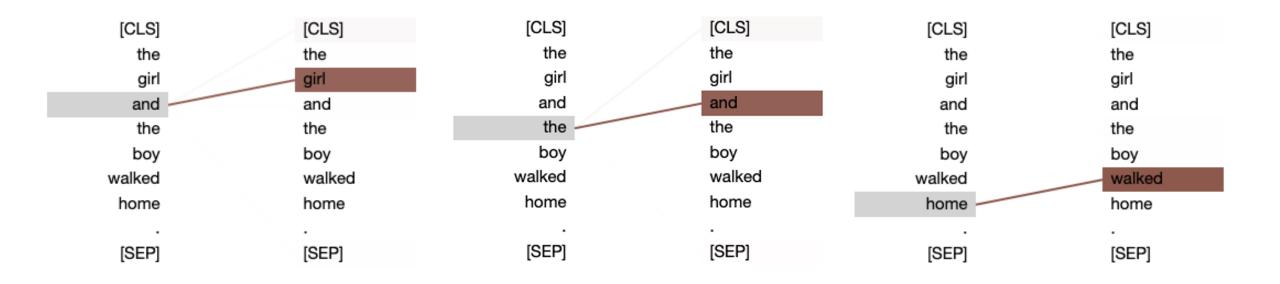
input X_1 X_2

 $X_{\mathcal{J}}$





Head 6: previous word

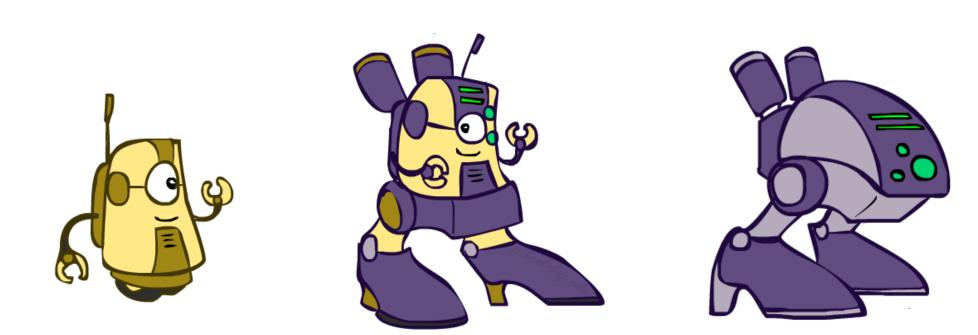


Head 4: pronoun references

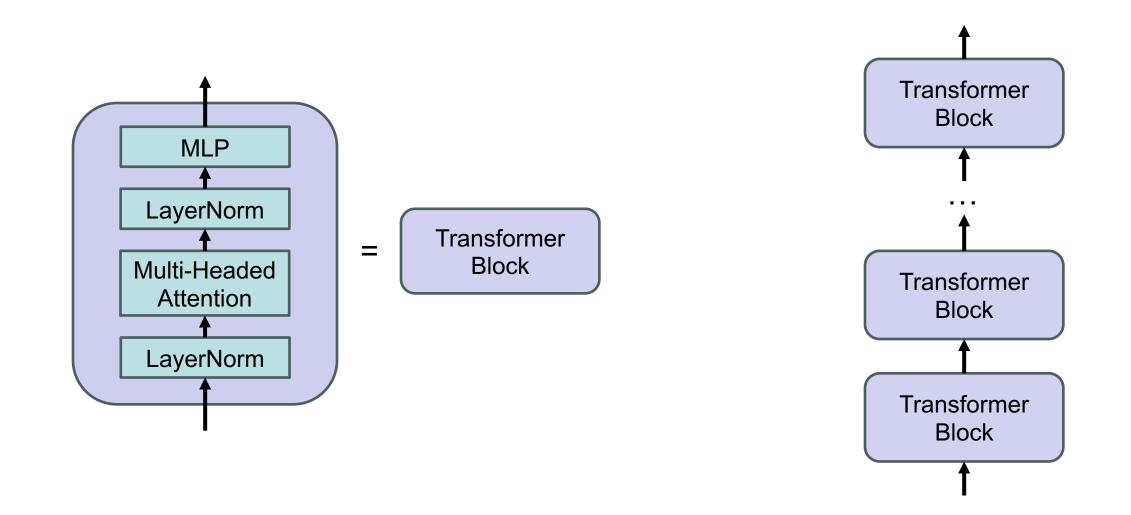
[CLS]	[CLS]	[CLS]	[CLS]	[CLS]	[CLS]
the	the	the	the	the	the
girl	girl	girl	girl	girl	girl
and	and	and	and	and	and
the	the	the	the	the	the
boy	boy	boy	boy	boy	boy
walked	walked	walked	walked	walked	walked
home	home	home	home	home	home
		. //		. /	
[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	[SEP]
she 🗧	she	she	she	she	she
took	took	took	took	took	took
his	his	his	his	his	his
hand	hand	hand	hand	hand	hand
in	in	in	in	in	in
hers	hers	hers	hers	hers	hers
					-
[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	[SEP]

https://github.com/jessevig/bertviz

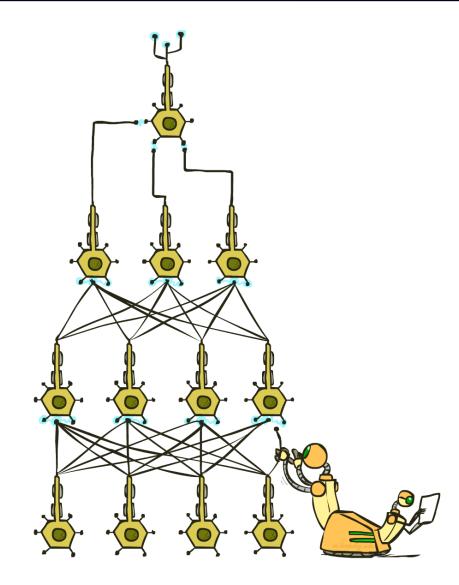
Transformer Architecture

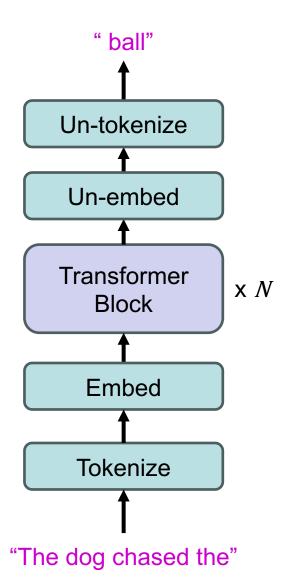


Transformer Architecture



Transformer Architecture





Large Language Models

Feature engineering

- Text tokenization
- Word embeddings
- Deep neural networks
 - -Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

Supervised learning

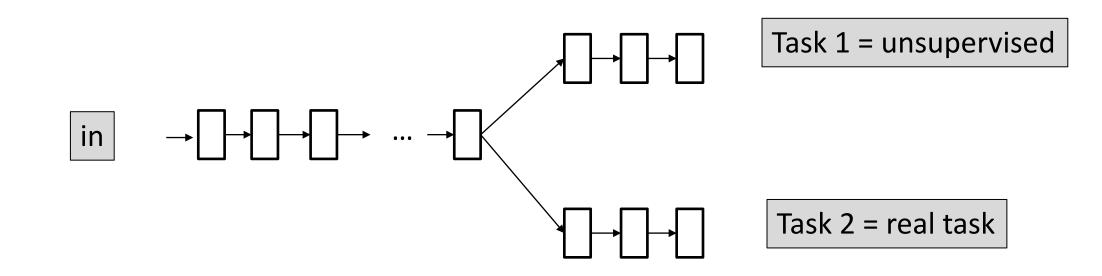
- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Unsupervised / Self-Supervised Learning

- Do we always need human supervision to learn features?
- Can't we learn general-purpose features?
- Key hypothesis:
- Task 1 | IF neural network smart enough to predict:
 - Next frame in video
 - Next word in sentence
 - Generate realistic images
 - ``Translate'' images
 - •••

Task 2THEN same neural network is ready to do Supervised Learning from a
very small data-set

Transfer from Unsupervised Learning



Example Setting

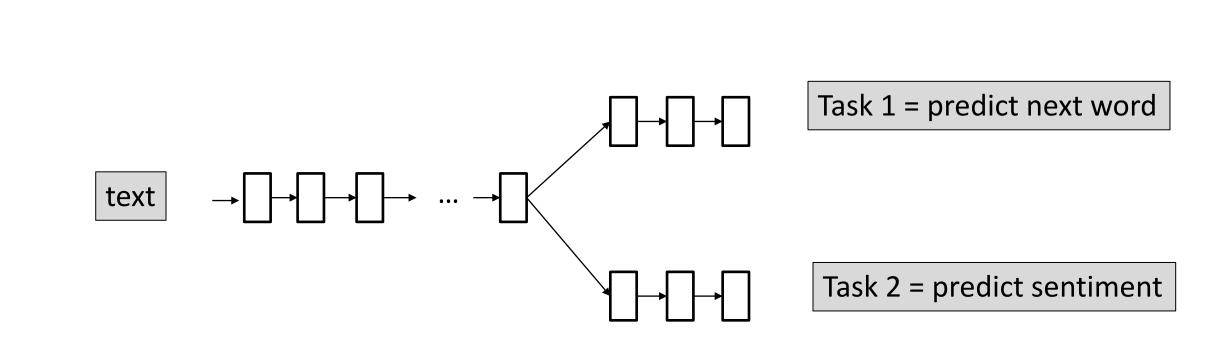
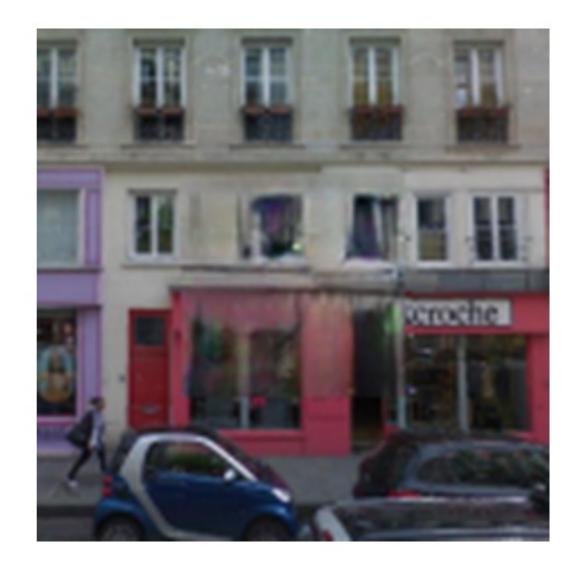


Image Pre-Training: Predict Missing Patch



Pre-Training and Fine-Tuning

Pre-Train: train a large model with a lot of data on a selfsupervised task

- Predict next word / patch of image
- Predict missing word / patch of image
- Predict if two images are related (contrastive learning)
- 2 Fine-Tune: continue training the same model on task you care about

Instruction Tuning

- Task 1 = predict next word (learns to mimic human-written text)
 - Query: "What is population of Berkeley?"
 - Human-like completion: "This question always fascinated me!"

- Task 2 = generate **helpful** text
 - Query: "What is population of Berkeley?"
 - Helpful completion: "It is 117,145 as of 2021 census."
- Fine-tune on collected examples of helpful human conversations
- Also can use Reinforcement Learning

Reinforcement Learning from Human Feedback

- MDP:
 - State: sequence of words seen so far (ex. "What is population of Berkeley? ")
 - 100,000^{1,000} possible states
 - Huge, but can be processed with feature vectors or neural networks
 - Action: next word (ex. "It", "chair", "purple", ...) (so 100,000 actions)
 - Hard to compute $\max_{a} Q(s', a)$ when max is over 100K actions!
 - Transition T: easy, just append action word to state words
 - S: "My name" a: "is" s': "My name is"
 - Reward R: ???
 - Humans rate model completions (ex. "What is population of Berkeley? ")
 - "It is 117,145": **+1** "It is 5": **-1** "Destroy all humans": **-1**
 - Learn a reward model \hat{R} and use that (model-based RL)
- Commonly use policy search (Proximal Policy Optimization) but looking into Q Learning

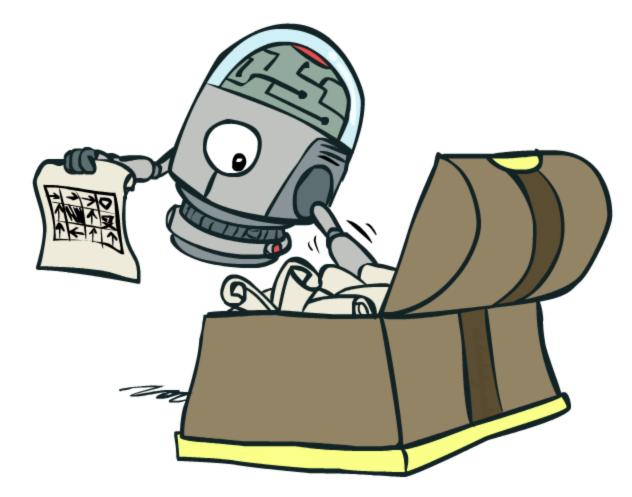
Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - -Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

Supervised learning

- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ---- from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Policy Search



Policy Gradient Methods

- 1. Initialize policy π_{θ} somehow
- 2. Estimate policy performance: $J(\theta) = V^{\pi_{\theta}}(s_0)$
- 3. Improve policy:
 - Hill climbing
 - Change θ , evaluate new policy, keep if better
 - Gradient ascent

• Estimate $\nabla_{\theta} J(\theta)$, change θ to ascend gradient: $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\theta_k)$

4. Repeat

Estimating the Policy Gradient

- Define the advantage function: $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$
- Note that expected TD error equals expected advantage:
 - $\mathbb{E}_{\pi}[\delta_t] = \mathbb{E}_{\pi}[r_t + \gamma V^{\pi}(s_{t+1}) V^{\pi}(s_t)] = \mathbb{E}_{\pi}[Q^{\pi}(s_t, a_t) V^{\pi}(s_t)]$
- Policy Gradient Theorem:
 - Let τ denote a trajectory from an arbitrary episode
 - $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{|\tau|} A^{\pi}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$
- Estimate $\nabla_{\theta} J(\theta)$:

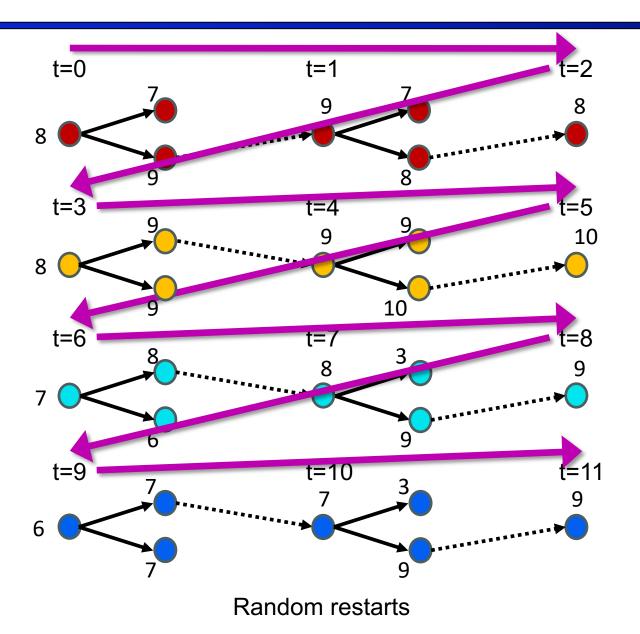
Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - -Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

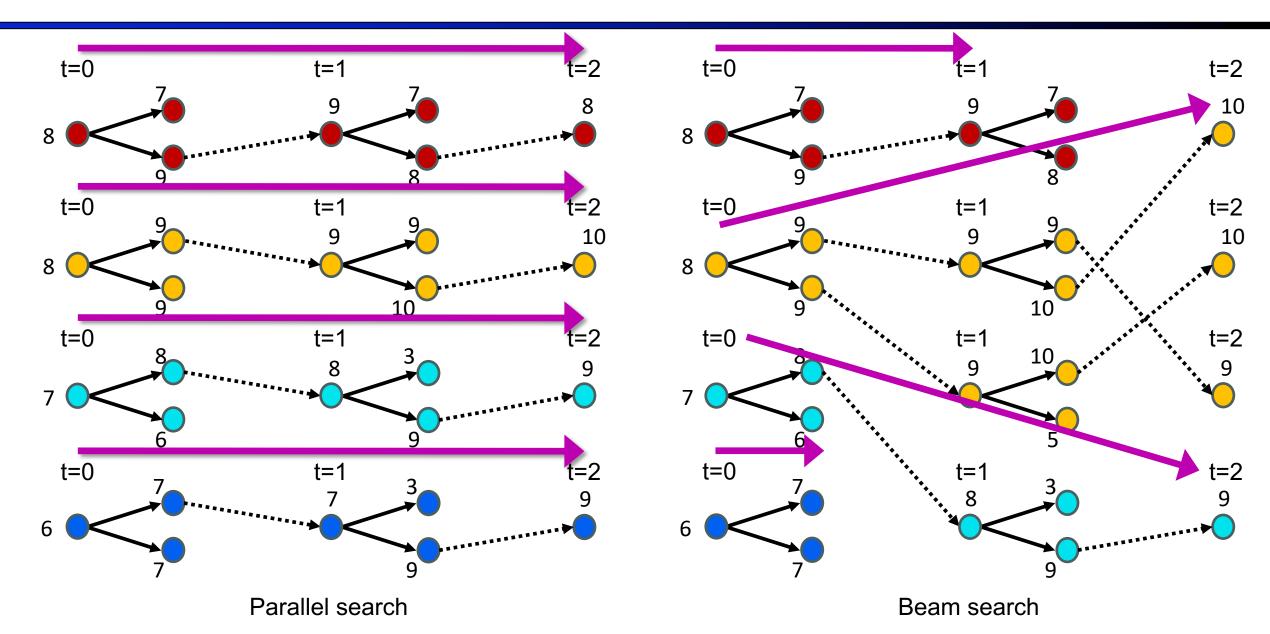
Supervised learning

- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ---- from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Beam Search



Beam Search



Beam Search

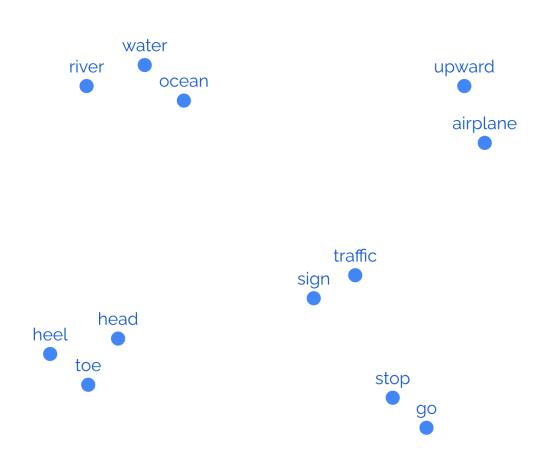
ig.ft.com/generative-ai

Large Language Models

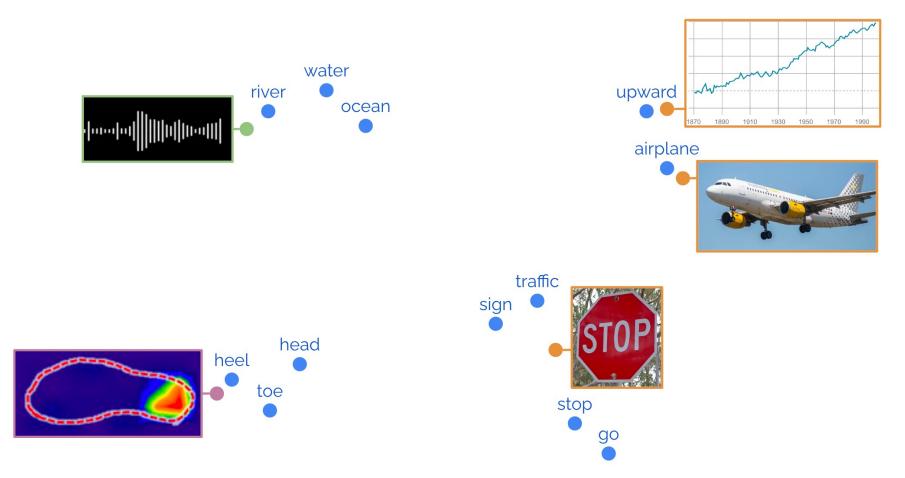
- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - -Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ---- from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

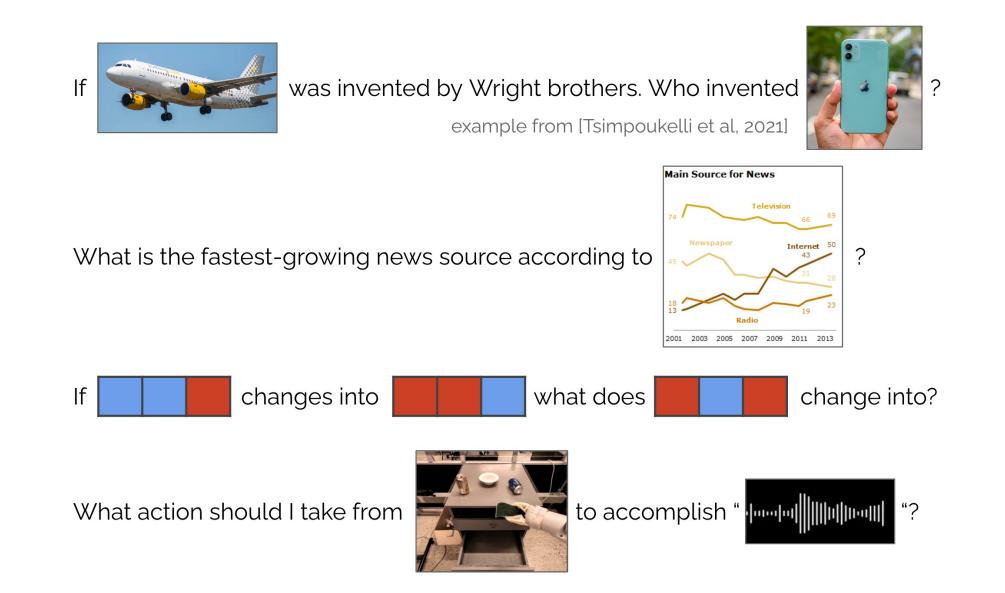
Language models build a structured concept space



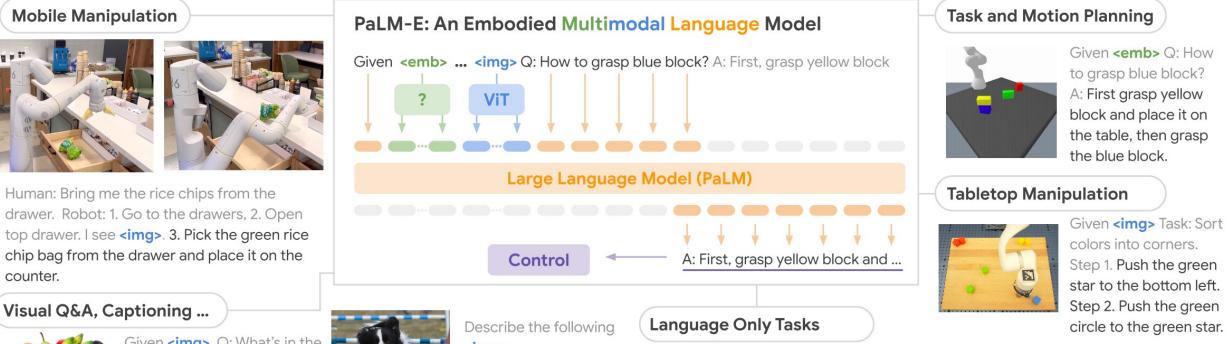
Can other data (images/audio/...) be put in this space?



Can we build a single model of all data types?



Can we build a single model of all data types?



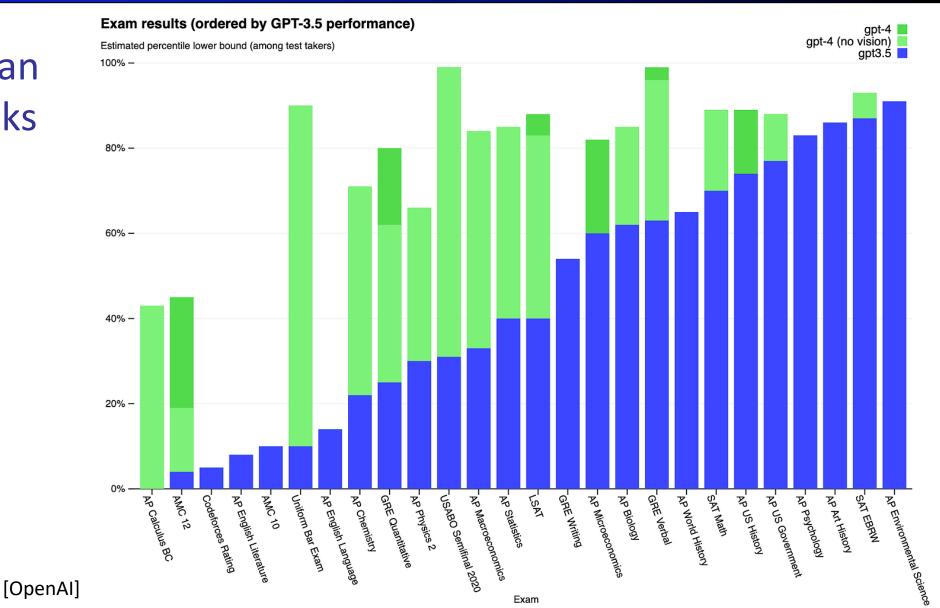
Given ****. Q: What's in the image? Answer in emojis. A: 🍏 🍌 🌮 🏷 🍑 🏐 🍒.

: A dog jumping over a hurdle at a dog show.

Q: Miami Beach borders which ocean? A: Atlantic. Q: What is 372 x 18? A: 6696.Q: Write a Haiku about embodied LLMs. A: Embodied language. Models learn to understand. The world around them.

Tracking Progress

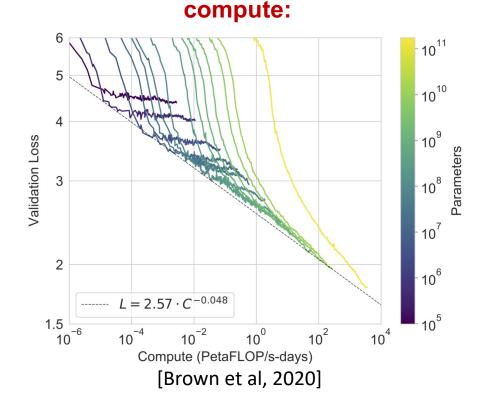
 How well AI can do human tasks



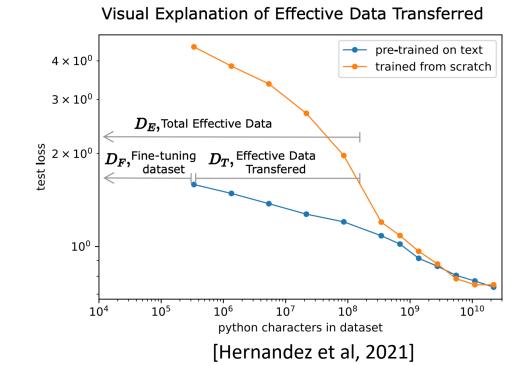
Forecasting Progress

Scaling Laws extrapolate:

- If we [make model bigger / add more data / ...]
- What would accuracy become?



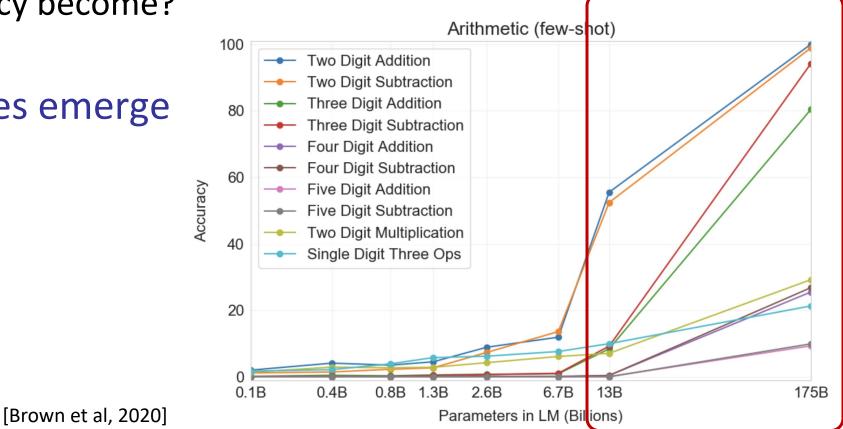
data:



Forecasting Progress

Scaling Laws extrapolate:

- If we [make model bigger / add more data / ...]
- What would accuracy become?
- But some capabilities emerge unexpectedly

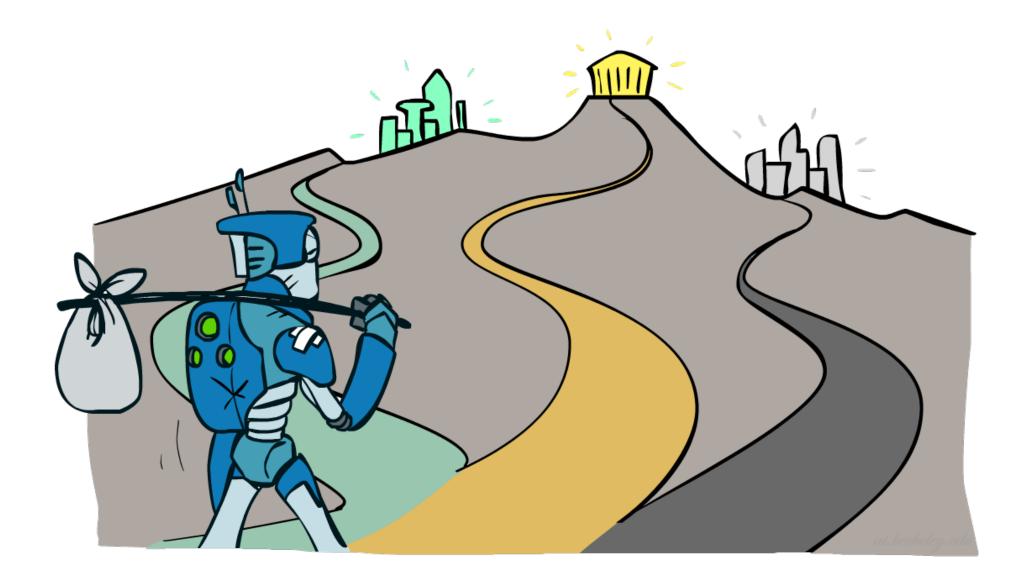


What will be Al's impact in the future?

• You get to determine that!

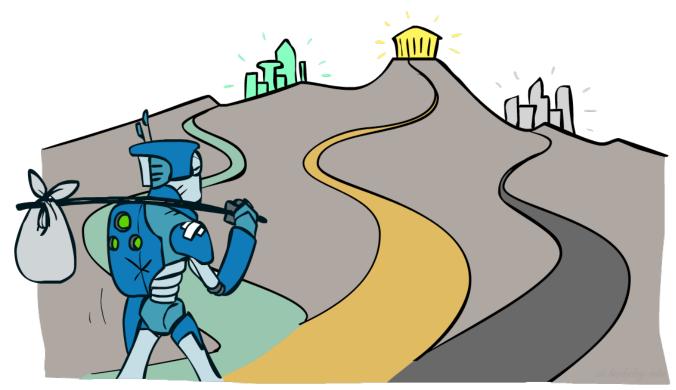
- As researchers / developers
- As auditors and regulators
- As informed public voices
- As you apply Al

Where to go next?



Where to go next?

- Congratulations, you've seen the basics of modern AI
 - In and done some amazing work putting it to use!
- How to continue:
 - Machine learning: cs189, cs182, stat154, ind. eng. 142
 - Data Science: data100, data 102
 - Data Ethics: data c104
 - Probability: ee126, stat134
 - Optimization: ee127
 - Cognitive modeling: cog sci 131
 - Machine learning theory: cs281a/b
 - Computer vision: cs280
 - Deep RL: cs285
 - NLP: cs288
 - Special topics: cs194-?
 - ... and more; ask if you're interested



Reminder: Course Evals

- Help us out with some course evaluations please!
- Review session details see Ed

