
CS 188 Introduction to Artificial Intelligence
Spring 2024 Note 4

Author (all other notes): Nikhil Sharma

Author (Bayes’ Nets notes): Josh Hug and Jacky Liang, edited by Regina Wang

Author (Logic notes): Henry Zhu, edited by Peyrin Kao

Credit (Machine Learning and Logic notes): Some sections adapted from the textbook Artificial Intelligence:
A Modern Approach.

Last updated: August 26, 2023

Local Search
In the previous note, we wanted to find the goal state, along with the optimal path to get there. But in some
problems, we only care about finding the goal state — reconstructing the path can be trivial. For example,
in Sudoku, the optimal configuration is the goal. Once you know it, you know to get there by filling in the
squares one by one.

Local search algorithms allow us to find goal states without worrying about the path to get there. In local
search problems, the state space are sets of "complete" solutions. We use these algorithms to try to find a
configuration that satisfies some constraints or optimizes some objective function.

The figure above shows the one dimensional plot of an objective function on the state space. For that

CS 188, Spring 2024, Note 4 1



function we wish to find the state that corresponds to the highest objective value. The basic idea of local
search algorithms is that from each state they locally move towards states that have a higher objective value
until a maximum (hopefully the global) is reached. We will be covering four such algorithms, hill-climbing,
simulated annealing, local beam search and genetic algorithms. All these algorithms are also used in
optimization tasks to either maximize or minimize an objective function.

Hill-Climbing Search
The hill-climbing search algorithm (or steepest-ascent) moves from the current state towards the neighbor-
ing state that increases the objective value the most. The algorithm does not maintain a search tree but only
the states and the corresponding values of the objective. The “greediness" of hill-climbing makes it vulnera-
ble to being trapped in local maxima (see figure 4.1), as locally those points appear as global maxima to the
algorithm, and plateaus (see figure 4.1). Plateaus can be categorized into “flat" areas at which no direction
leads to improvement (“flat local maxima") or flat areas from which progress can be slow (“shoulders").

Variants of hill-climbing, like stochastic hill-climbing which selects an action randomly among the possible
uphill moves, have been proposed. Stochastic hill-climbing has been shown in practice to converge to higher
maxima at the cost of more iterations. Another variant, random sideways moves, allows moves that don’t
strictly increase the objective, allowing the algorithm to escape “shoulders".

The pseudocode of hill-climbing can be seen above. As the name suggests, the algorithm iteratively moves to
a state with higher objective value until no such progress is possible. Hill-climbing is incomplete. Random-
restart hill-climbing on the other hand, which conducts a number of hill-climbing searches from randomly
chosen initial states, is trivially complete as at some point a randomly chosen initial state can converge to
the global maximum.

As a note, later in this course you will encounter the term "gradient descent". It is the exact same idea as
hill-climbing, except instead of maximizing an objective function we will want to minimize a cost function.

Simulated Annealing Search
The second local search algorithm we will cover is simulated annealing. Simulated annealing aims to
combine random walk (randomly moves to nearby states) and hill-climbing to obtain a complete and efficient
search algorithm. In simulated annealing we allow moves to states that can decrease the objective.

The algorithm chooses a random move at each timestep. If the move leads to higher objective value, it is
always accepted. If it leads to a smaller objective value, then the move is accepted with some probability.
This probability is determined by the temperature parameter, which initially is high (more “bad" moves
allowed) and gets decreased according to some “schedule". Theoretically, if temperature is decreased slowly
enough, the simulated annealing algorithm will reach the global maximum with probability approaching 1.

CS 188, Spring 2024, Note 4 2



Local Beam Search
Local beam search is another variant of the hill-climbing search algorithm. The key difference between the
two is that local beam search keeps track of k states (threads) at each iteration. The algorithm starts with
a random initialization of k states and at each iteration it takes on k new states as done in hill-climbing.
These aren’t just k copies of the regular hill-climbing algorithm. Crucially, the algorithm selects the k best
successor states from the complete list of successor states from all the threads. If any of the threads finds
the optimal value the algorithm stops.

The k threads can share information between them, allowing “good" threads (for which objectives are high)
to “attract" the other threads in that region as well.

Local beam search is also susceptible in getting stuck in “flat" regions like hill-climbing does. Stochastic
beam search, analogous to stochastic hill-climbing, can alleviate this issue.

Genetic Algorithms
Finally, we present genetic algorithms which are a variant of local beam search and are also extensively used
in many optimization tasks. As indicated by the name, genetic algorithms take inspiration from evolution.
Genetic algorithms begin as beam search with k randomly initialized states called the population. States
(called individuals) are represented as a string over a finite alphabet.

Let’s revisit the 8-Queens problem presented in lecture. As a recap, 8-Queens is a constraint-satisfaction
problem where we hope to situate 8 queens on an 8-by-8 board. The constraint-satisfying solution will not
have any attacking pairs of queens, which are queens that are in the same row, column, or diagonal. All of
the previously covered algorithms are possible ways to approach the 8-Queens problem.

CS 188, Spring 2024, Note 4 3



For a genetic algorithm, we represent each of the eight queens with a number from 1 − 8 representing
the location of each queen in its column (column (a) in Fig. 4.6). Each individual is evaluated using an
evaluation function (fitness function) and they are ranked according to the values of that function. For the
8-Queens problem this is the number of non-attacking (non-conflicted) pairs of queens.

The probability of choosing a state to “reproduce" is proportional to the value of that state. We proceed to
select pairs of states to reproduce by sampling from these probabilities (column (c) in Fig. 4.6). Offspring
are generated by crossing over parent strings at the crossover point. The crossover point is chosen randomly
for each pair. Finally, each offspring is susceptible to some random mutation with independent probability.
The pseudocode of the genetic algorithm can be seen below.

CS 188, Spring 2024, Note 4 4



Similar to stochastic beam search, genetic algorithms try to move uphill while exploring the state space and
exchanging information between threads. Their main advantage is the use of crossovers — large blocks of
letters that have evolved and lead to high valuations can be combined with other such blocks and produce a
solution with high total score.

CS 188, Spring 2024, Note 4 5



Summary
In this note, we discussed local search algorithms and their motivation. We can use these approaches when
we don’t care about the path to some goal state, and want to satisfy constraints or optimize some objective.
Local search approaches allow us to save space and find adequate solutions when working in large state
spaces!

We went over a few foundational local search approaches, which build upon each other:

• Hill-Climbing

• Simulated Annealing

• Local Beam Search

• Genetic Algorithms

The idea of optimizing a function will reappear later in this course, especially when we cover neural net-
works.

CS 188, Spring 2024, Note 4 6


