
CS 188 Introduction to Artificial Intelligence
Spring 2024 Note 8

Author (all other notes): Nikhil Sharma

Author (Bayes’ Nets notes): Josh Hug and Jacky Liang, edited by Regina Wang

Author (Logic notes): Henry Zhu, edited by Peyrin Kao

Credit (Machine Learning and Logic notes): Some sections adapted from the textbook Artificial Intelligence:
A Modern Approach.

Last updated: March 5, 2024

Propositional Logic
Like other languages, logic has multiple dialects. We will introduce two: propositional logic and first-
order logic. Propositional logic is written in sentences composed of proposition symbols, possibly joined
by logical connectives. A proposition symbol is generally represented as a single uppercase letter. Each
proposition symbol stands for an atomic proposition about the world. A model is an assignment of true or
false to all the proposition symbols, which we might think of as a "possible world". For example, if we had
the propositions A = "today it rained" and B = "I forgot my umbrella" then the possible models (or "worlds")
are:

1. {A=true, B=true} ("Today it rained and I forgot my umbrella.")

2. {A=true, B=false} ("Today it rained and I didn’t forget my umbrella.")

3. {A=false, B=true} ("Today it didn’t rain and I forgot my umbrella.")

4. {A=false, B=false} ("Today it didn’t rain and I did not forget my umbrella.")

In general, for N symbols, there are 2N possible models. We say a sentence is valid if it is true in all of these
models (e.g. the sentence True), satisfiable if there is at least one model in which it is true, and unsatisfiable
if it is not true in any models. For example, the sentence A∧B is satisfiable because it is true in model 1,
but not valid since it is false in models 2, 3, 4. On the other hand ¬A∧A is unsatisfiable as no choice for A
returns True.

Below are some useful logical equivalences, which can be used for simplifying sentences to forms that are
easier to work and reason with.

CS 188, Spring 2024, Note 8 1

One particularly useful syntax in propositional logic is the conjunctive normal form or CNF which is a
conjunction of clauses, each of which a disjunction of literals. It has the general form (P1 ∨ ·· ·∨Pi)∧ ·· ·∧
(Pj ∨·· ·∨Pn), i.e. it is an ‘AND’ of ‘OR’s. As we’ll see, a sentence in this form is good for some analyses.
Importantly, every logical sentence has a logically equivalent conjunctive normal form. This means that we
can formulate all the information contained in our knowledge base (which is just a conjunction of different
sentences) as one large CNF statement, by ’AND’-ing these CNF statements together.

CNF representation is particularly important in propositional logic. Here we will see an example of convert-
ing a sentence to CNF representation. Assume we have the sentence A ⇔ (B∨C) and we want to convert it
to CNF. The derivation is based on the rules in Figure 7.11.

1. Eliminate ⇔: expression becomes (A ⇒ (B∨C))∧ ((B∨C)⇒ A) using biconditional elimination.

2. Eliminate ⇒: expression becomes (¬A∨B∨C)∧ (¬(B∨C)∨A) using implication elimination.

3. For CNF representation, the “nots" (¬) must appear only on literals. Using De Morgan’s rule we
obtain (¬A∨B∨C)∧ ((¬B∧¬C)∨A).

4. As a last step we apply the distributivity law and obtain (¬A∨B∨C)∧ (¬B∨A)∧ (¬C∨A).

The final expression is a conjunction of three OR clauses and so it is in CNF form.

Propositional Logical Inference
Logic is useful and powerful because it grants the ability to draw new conclusions from what we already
know. To define the problem of inference we first need to define some terminology.

We say that a sentence A entails another sentence B if in all models that A is true, B is as well, and we
represent this relationship as A |= B. Note that if A |= B then the models of A are a subset of the models of
B, (M(A)⊆ M(B)). The inference problem can be formulated as figuring out whether KB |= q, where KB is
our knowledge base of logical sentences, and q is some query. For example, if Elicia has avowed to never
set foot in Crossroads again, we could infer that we will not find her when looking for friends to sit with for
dinner.

We draw on two useful theorems to show entailment:

CS 188, Spring 2024, Note 8 2

i.) (A |= B iff A ⇒ B is valid).

Proving entailment by showing that A ⇒ B is valid is known as a direct proof.

ii.) (A |= B iff A∧¬B is unsatisfiable).

Proving entailment by showing that A∧¬B is unsatisfiable is known as a proof by contradiction.

Model Checking
One simple algorithm for checking whether KB |= q is to enumerate all possible models, and to check if in
all the ones in which KB is true, q is true as well. This approach is known as model checking. In a sentence
with a feasible number of symbols, enumeration can be done by drawing out a truth table.

For a propositional logical system, if there are N symbols, there are 2N models to check, and hence the time
complexity of this algorithm is O(2N), while in first-order logic, the number of models is infinite. In fact
the problem of propositional entailment is known to be co-NP-complete. While the worst case runtime will
inevitably be an exponential function of the size of the problem, there are algorithms that can in practice
terminate much more quickly. We will discuss two model checking algorithms for propositional logic.

The first, proposed by Davis, Putnam, Logemann, and Loveland (which we will call the DPLL algorithm)
is essentially a depth-first, backtracking search over possible models with three tricks to reduce excessive
backtracking. This algorithm aims to solve the satisfiability problem, i.e. given a sentence, find a working
assignment to all the symbols. As we mentioned, the problem of entailment can be reduced to one of satisfi-
ability (show that A∧¬B is not satisfiable), and specifically DPLL takes in a problem in CNF. Satisfiability
can be formulated as a constraint satisfaction problem as follows: let the variables (nodes) be the symbols
and the constraints be the logical constraints imposed by the CNF. Then DPLL will continue assigning sym-
bols truth values until either a satisfying model is found or a symbol cannot be assigned without violating
a logical constraint, at which point the algorithm will backtrack to the last working assignment. However,
DPLL makes three improvements over simple backtracking search:

1. Early Termination: A clause is true if any of the symbols are true. Therefore the sentence could be
known to be true even before all symbols are assigned. Also, a sentence is false if any single clause
is false. Early checking of whether the whole sentence can be judged true or false before all variables
are assigned can prevent unnecessary meandering down subtrees.

2. Pure Symbol Heuristic: A pure symbol is a symbol that only shows up in its positive form (or only in
its negative form) throughout the entire sentence. Pure symbols can immediately be assigned true or
false. For example, in the sentence (A∨B)∧ (¬B∨C)∧ (¬C∨A), we can identify A as the only pure
symbol and can immediately A assign to true, reducing the satisfying problem to one of just finding a
satisfying assignment of (¬B∨C).

3. Unit Clause Heuristic: A unit clause is a clause with just one literal or a disjunction with one literal
and many falses. In a unit clause, we can immediately assign a value to the literal, since there is only
one valid assignment. For example, B must be true for the unit clause (B∨ f alse∨ ·· ·∨ f alse) to be
true.

CS 188, Spring 2024, Note 8 3

DPLL: Example
Suppose we have the following sentence in conjunctive normal form (CNF):

(¬N ∨¬S)∧ (M∨Q∨N)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P∨N)∧ (¬R∨¬L)∧ (S)

We want to use the DPLL algorithm to determine whether it is satisfiable. Suppose we use a fixed variable
ordering (alphabetical order) and a fixed value ordering (true before false).

On each recursive call to the DPLL function, we keep track of three things:

• model is a list of the symbols we’ve assigned so far, and their values. For example, {A : T,B : F} tells
us the values of two symbols assigned so far.

• symbols is a list of unassigned symbols that still need assignments.

• clauses is a list of clauses (disjunctions) in CNF that still need to be considered on this call or future
recursive calls to DPLL.

In other words, each call to DPLL is solving a smaller satisfiability problem, usually with fewer clauses,
fewer symbols, and a model with some symbols already assigned.

We start by calling DPLL with an empty model (no symbols assigned yet), symbols containing all the
symbols in the original sentence, and clauses containing all the clauses in the original sentence.

Our initial DPLL call looks like this:

• model: {}

• symbols: [L,M,N,P,Q,R,S]

CS 188, Spring 2024, Note 8 4

• clauses: (¬N∨¬S)∧(M∨Q∨N)∧(L∨¬M)∧(L∨¬Q)∧(¬L∨¬P)∧(R∨P∨N)∧(¬R∨¬L)∧(S)

First, we apply early termination: we check if given the current model, every clause is true, or at least one
clause is false. Since the model hasn’t assigned any symbol yet, we don’t know which clauses are true or
false yet.

Next, we check for pure literals. There are no symbols that only appear in a non-negated form, or symbols
that only appear in a negated form, so there are no pure literals that we can simplify. For example, N is not
a pure literal because the first clause uses the negated ¬N, and the second clause uses the non-negated N.

Next, we check for unit clauses (clauses with just one symbol). There’s one unit clause S. For this overall
sentence to be true, we know that S has to be true (there’s no other way to satisfy that clause). Therefore, we
can make another call to DPLL with S assigned to true in our model, and S removed from the list of symbols
that still need assignments.

Our second DPLL call looks like this:

• model: {S : T}

• symbols: [L,M,N,P,Q,R]

• clauses: (¬N∨¬S)∧(M∨Q∨N)∧(L∨¬M)∧(L∨¬Q)∧(¬L∨¬P)∧(R∨P∨N)∧(¬R∨¬L)∧(S)

First, we can simplify the clauses by substituting in the new assignment (S is true, and ¬S is false) from our
model:

(¬N ∨F)∧ (M∨Q∨N)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P∨N)∧ (¬R∨¬L)∧ (T)

(¬N)∧ (M∨Q∨N)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P∨N)∧ (¬R∨¬L)

With our new simplified clauses, we can check for early termination. We still don’t have enough information
to conclude that all sentences are true, or at least one sentence is false.

Next, we check for pure literals. As before, there are no symbols that only appear in a non-negated form, or
symbols that appear in a negated form.

Next, we check for unit clauses. There’s one unit clause (¬N). For this overall sentence to be true, (¬N)
must be true, so N must be false.

Therefore, we can make another call to DPLL with N assigned to false in our model, and N removed from
the list of symbols that still need assignments. We can also use the simplified clause that we computed from
this call in DPLL (where we simplified S out of the clauses).

Our third DPLL call looks like this:

• model: {S : T,N : F}

• symbols: [L,M,P,Q,R]

• clauses: (¬N)∧ (M∨Q∨N)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P∨N)∧ (¬R∨¬L)

The first thing we do on this call is simplifying clauses by substituting in the new assignment (N is false,
and ¬N is true) from our model:

CS 188, Spring 2024, Note 8 5

(T)∧ (M∨Q∨F)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P∨F)∧ (¬R∨¬L)

(M∨Q)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

With our new simplified clause, we check for early termination, and then we check for pure literals. As
before, we don’t find either one.

Next, we check for unit clauses. We don’t find any clauses with just one symbol left.

At this point, we need to try to assign a value to a variable. From our fixed variable ordering, we’ll assign
M first, and from our fixed value ordering, we’ll try making M true first. If assigning M true leads to an
unsatisfiable sentence, then we need to backtrack and try again with M assigned to false. If assigning M
false also leads to an unsatisfiable sentence, then we’ll know that the entire sentence is unsatisfiable. In other
words, we’ll now make two recursive calls to DPLL, one with M true and one with M false, and check if
either one produces a satisfiable assignment.

On the first DPLL call on the branch with M true, we’ll add M true to our model, and use the simplified
clause from the previous call:

• model: {S : T,N : F,M : T}

• symbols: [L,P,Q,R]

• clauses: (M∨Q)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

First, we simplify clauses by substituting in the new assignment (M true) from our model:

(T ∨Q)∧ (L∨F)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

(L)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

With our new simplified clause, we check for early termination; as before, we don’t find it. However, we do
find a pure literal, ¬Q (recall that since there are no instances of Q and only instances of ¬Q, this counts as
a pure literal). We set Q to be false so that ¬Q can be true and proceed.

On our second DPLL call on the branch with M true:

• model: {S : T,N : F,M : T,Q : F}

• symbols: [L,P,R]

• clauses: (L)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

We simplify our clauses accordingly:

(L)∧ (L∨T)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

(L)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

CS 188, Spring 2024, Note 8 6

Checking for early termination and pure literals, we find neither. We do find the unit clause (L) which we
can then set to true.

On the next call in this same branch with M being true, we now have:

• model: {S : T,N : F,M : T,Q : F,L : T}

• symbols: [P,R]

• clauses: (L)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

Let’s simplify our clauses:

(T)∧ (F ∨¬P)∧ (R∨P)∧ (¬R∨F)

(¬P)∧ (R∨P)∧ (¬R)

Checking for early termination and pure literals, we find nothing. When checking for unit clauses, we find
(¬P). Let’s set that entire expression to true, i.e. setting P to false, for the next DPLL call.

Our next call proceeds as follows:

• model: {S : T,N : F,M : T,Q : F,L : T,P : F}

• symbols: [R]

• clauses: (¬P)∧ (R∨P)∧ (¬R)

We simplify with P being set to false and get the clauses:

(T)∧ (R∨F)∧ (¬R)

(R)∧ (¬R)

We check for early termination. We note that this sentence has both R and ¬R, which cannot both be satisfied
at the same time. At this point, we can say that this sentence is unsatisfiable.

Because the M true branch has ended in an unsatisfiable sentence, we backtrack to the point before assigning
M true, and we make a DPLL call with M false instead. Our first DPLL call on the branch with M false:

• model: {S : T,N : F,M : F}

• symbols: [L,P,Q,R]

• clauses: (M∨Q)∧ (L∨¬M)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

We simplify clauses by substituting in the new assignment (M false) from our model:

(F ∨Q)∧ (L∨T)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

(Q)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

CS 188, Spring 2024, Note 8 7

We aren’t able to terminate early, and we don’t find any pure literals. We find a unit clause Q, so we make
another call to DPLL with Q true (and removed from our symbols list).

Our second DPLL call on the branch with M false:

• model: {S : T,N : F,M : F,Q : T}

• symbols: [L,P,R]

• clauses: (Q)∧ (L∨¬Q)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

Substituting the new assignment (Q true) into our clauses:

(T)∧ (L∨F)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

(L)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

We aren’t able to terminate early, and we don’t find any pure literals. We find a unit clause L, so we make
another DPLL call with L true (and removed from our symbols list).

Our third DPLL call on the branch with M false:

• model: {S : T,N : F,M : F,Q : T,L : T}

• symbols: [P,R]

• clauses: (L)∧ (¬L∨¬P)∧ (R∨P)∧ (¬R∨¬L)

Substituting the new assignment (L true) into our clauses:

(T)∧ (F ∨¬P)∧ (R∨P)∧ (¬R∨F)

(¬P)∧ (R∨P)∧ (¬R)

We aren’t able to terminate early, and we don’t find any pure literals. We find two unit clauses (¬P) and
(¬R). By our variable ordering, we choose P first, and so we make another DPLL call with P false (and
removed from our symbols list).

Our third DPLL call on the branch with M false:

• model: {S : T,N : F,M : F,Q : T,L : T,P : F}

• symbols: [R]

• clauses: (¬P)∧ (R∨P)∧ (¬R)

Substituting the new assignment (P false) into our clauses:

(T)∧ (R∨F)∧ (¬R)

CS 188, Spring 2024, Note 8 8

(R)∧ (¬R)

We check for early termiination. We note that this sentence has both R and ¬R, which cannot both be
satisfied at the same time. At this point, we can say that this sentence is unsatisfiable.

Because the M true assignment resulted in an unsatisfiable sentence, and the M false assignment resulted in
an unsatisfiable sentence, we can conclude that this entire sentence is unsatisfiable, and we’re done.

Theorem Proving
An alternate approach is to apply rules of inference to KB to prove that KB |= q. For example, if our
knowledge base contains A and A ⇒ B then we can infer B (this rule is known as ModusPonens). The
two previously mentioned algorithms use the fact ii.) by writing A∧¬B in CNF and show that it is either
satisfiable or not.

We could also prove entailment using three rules of inference:

1. If our knowledge base contains A and A ⇒ B we can infer B (Modus Ponens).

2. If our knowledge base contains A∧B we can infer A. We can also infer B. (And-Elimination).

3. If our knowledge base contains A and B we can infer A∧B (Resolution).

The last rule forms the basis of the resolution algorithm which iteratively applies it to the knowledge base
and to the newly inferred sentences until either q is inferred, in which case we have shown that KB |= q, or
there is nothing left to infer, in which case KB ̸|= q. Although this algorithm is both sound (the answer will
be correct) and complete (the answer will be found) it runs in worst case time that is exponential in the size
of the knowledge base.

However, in the special case that our knowledge base only has literals (symbols by themselves) and impli-
cations: (P1∧·· ·∧Pn ⇒ Q)≡ (¬P1∨·· ·∨¬P2∨Q), we can prove entailment in time linear to the size of the
knowledge base. One algorithm, forward chaining iterates through every implication statement in which
the premise (left hand side) is known to be true, adding the conclusion (right hand side) to the list of known
facts. This is repeated until q is added to the list of known facts, or nothing more can be inferred.

CS 188, Spring 2024, Note 8 9

Forward Chaining: Example
Suppose we had the following knowledge base:

1. A → B

2. A →C

3. B∧C → D

4. D∧E → Q

5. A∧D → Q

6. A

We’d like to use forward chaining to determine if Q is true or false.

To initialize the algorithm, we’ll initialize a list of numbers count. The ith number in the list tells us how
many symbols are in the premise of the ith clause. For example, the third clause B∧C → D has 2 symbols (B
and C) in its premise, so the third number in our list should be 2. Note that the sixth clause A has 0 symbols
in its premise, because it is equivalent to True → A.

Then, we’ll initialize inferred, a mapping of each symbol to true/false. This tells us which symbols we’ve
found to be true. Initially, all symbols will be false, because we haven’t proven any symbols to be true yet.

Finally, we’ll initialize a list of symbols agenda, which is a list of symbols that we can prove to be true, but
have not propagated the effects of yet. For example, if D were in the agenda, this would indicate that we’re

CS 188, Spring 2024, Note 8 10

ready to prove that D is true, but we still need to check how that affects any of the other clauses. Initially,
agenda will only contain the symbols we directly know to be true, which is just A here. (In other words,
agenda starts with any clauses with 0 symbols in its premise.)

Our starting state looks like this:

• count: [1,1,2,2,2,0]

• inferred: {A : F,B : F,C : F,D : F,E : F,Q : F}

• agenda: [A]

On each iteration, we’ll pop an element off agenda. Here, there’s only one element that we can pop off: A.
The symbol we popped off is not the symbol we want to analyze (Q), so we’re not done with the algorithm
yet.

According to the inferred table, A is false. However, since we’ve just popped A off the agenda, we’re able
to set it to true.

Next, we need to propagate the consequences of A being true. For each clause where A is in the premise,
we’ll decrement its corresponding count to indicate that there is one fewer symbol in the premise that needs
to be checked. In this example, clauses 1, 2, and 5 contain A in the premise, so we’ll decrement elements 1,
2, and 5 in count.

Finally, we check if any clauses have reached a count of 0. We note that this happened on clauses 1 and 2.
This indicates that every premise in clauses 1 and 2 have been satisfied, so the conclusions in clauses 1 and
2 are ready to be inferred. For example, in clause 1, all premises (just A here) have been satisfied, so the
conclusion B is ready to be inferred. We’ll add the conclusions in clauses 1 and 2 to the agenda.

After iteration 0, our algorithm look like this:

• count: [0,0,2,2,1,0]

• inferred: {A : T ,B : F,C : F,D : F,E : F,Q : F}

• agenda: [B,C]

On the next iteration, we’ll pop an element off agenda. Here we’ve chosen to pop off B. The symbol we
popped off is not the symbol we want to analyze (Q), so we’re not done with the algorithm yet.

According to the inferred table, B is false. However, since we’ve just popped B off the agenda, we’re able
to set it to true.

Next, we need to propagate the consequences of B being true. The only clause where B is in the premise is
clause 3. We have to decrement its corresponding count.

Finally, we check if any clauses have reached a count of 0. None of the clauses have newly reached a count
of 0, so we can’t draw any new conclusions, and we can’t add anything new to the agenda.

After iteration 1, our algorithm look like this:

• count: [0,0,1,2,1,0]

• inferred: {A : T,B : T ,C : F,D : F,E : F,Q : F}

• agenda: [C]

CS 188, Spring 2024, Note 8 11

Next, we’ll pop off C from the agenda (which is not Q so the algorithm isn’t done yet). We can set C to true
on the inferred list.

To propagate the consequences of C being true, we decrement the count for clause 3 (the only clause with C
in the premise).

Clause 3 has newly reached a count of 0, so we can add its conclusion, D, to the agenda.

After iteration 2, our algorithm look like this:

• count: [0,0,0,2,1,0]

• inferred: {A : T,B : T,C : T ,D : F,E : F,Q : F}

• agenda: [D]

Next, we’ll pop off D from the agenda (not Q, so algorithm isn’t done). We can set D to true on the inferred
list.

To propagate the consequences of D being true, we decrement the counts for clauses 4 and 5 (which contain
D in the premise).

Clause 5 has newly reached a count of 0, so we add its conclusion, Q, to the agenda.

After iteration 3, our algorithm look like this:

• count: [0,0,0,1,0,0]

• inferred: {A : T,B : T,C : T,D : T ,E : F,Q : F}

• agenda: [Q]

Next, we’ll pop off Q from the agenda. This is the symbol we wanted to evaluate, and popping it off the
agenda indicates that it has been proven to be true. We conclude that Q is true and finish the algorithm.

CS 188, Spring 2024, Note 8 12

