
CS 188 Introduction to Artificial Intelligence
Spring 2024 Note 16

Author (all other notes): Nikhil Sharma

Author (Bayes’ Nets notes): Josh Hug and Jacky Liang, edited by Regina Wang

Author (Logic notes): Henry Zhu, edited by Peyrin Kao

Credit (Machine Learning and Logic notes): Some sections adapted from the textbook Artificial Intelligence:
A Modern Approach.

Last updated: August 26, 2023

Particle Filtering
Recall that with Bayes’ nets, when running exact inference was too computationally expensive, using one
of the sampling techniques we discussed was a viable alternative to efficiently approximate the desired
probability distribution(s) we wanted. Hidden Markov Models have the same drawback - the time it takes
to run exact inference with the forward algorithm scales with the number of values in the domains of the
random variables. This was acceptable in our current weather problem formulation where the weather
can only take on 2 values, Wi ∈ {sun,rain}, but say instead we wanted to run inference to compute the
distribution of the actual temperature on a given day to the nearest tenth of a degree.

The Hidden Markov Model analog to Bayes’ net sampling is called particle filtering, and involves simulat-
ing the motion of a set of particles through a state graph to approximate the probability (belief) distribution
of the random variable in question. This solves the same question as the Forward Algorithm: it gives us an
approximation of P(XN |e1:N).

Instead of storing a full probability table mapping each state to its belief probability, we’ll instead store a
list of n particles, where each particle is in one of the d possible states in the domain of our time-dependent
random variable. Typically, n is significantly smaller than d (denoted symbolically as n << d) but still
large enough to yield meaningful approximations; otherwise the performance advantage of particle filtering
becomes negligible. Particles are just the name for samples in this algorithm.

Our belief that a particle is in any given state at any given timestep is dependent entirely on the number of
particles in that state at that timestep in our simulation. For example, say we indeed wanted to simulate the
belief distribution of the temperature T on some day i and assume for simplicity that this temperature can
only take on integer values in the range [10,20] (d = 11 possible states). Assume further that we have n = 10
particles, which take on the following values at timestep i of our simulation:

[15,12,12,10,18,14,12,11,11,10]

By taking counts of each temperature that appears in our particle list and diving by the total number of
particles, we can generate our desired empirical distribution for the temperature at time i:

Ti 10 11 12 13 14 15 16 17 18 19 20
B(Ti) 0.2 0.2 0.3 0 0.1 0.1 0 0 0.1 0 0

CS 188, Spring 2024, Note 16 1

Now that we’ve seen how to recover a belief distribution from a particle list, all that remains to be discussed
is how to generate such a list for a timestep of our choosing.

Particle Filtering Simulation
Particle filtering simulation begins with particle initialization, which can be done quite flexibly - we can
sample particles randomly, uniformly, or from some initial distribution. Once we’ve sampled an initial list
of particles, the simulation takes on a similar form to the forward algorithm, with a time elapse update
followed by an observation update at each timestep:

• Time Elapse Update - Update the value of each particle according to the transition model. For a
particle in state ti, sample the updated value from the probability distribution given by P(Ti+1|ti).
Note the similarity of the time elapse update to prior sampling with Bayes’ nets, since the frequency
of particles in any given state reflects the transition probabilities.

• Observation Update - During the observation update for particle filtering, we use the sensor model
P(Fi|Ti) to weight each particle according to the probability dictated by the observed evidence and the
particle’s state. Specifically, for a particle in state ti with sensor reading fi, assign a weight of P(fi|ti).
The algorithm for the observation update is as follows:

1. Calculate the weights of all particles as described above.

2. Calculate the total weight for each state.

3. If the sum of all weights across all states is 0, reinitialize all particles.

4. Else, normalize the distribution of total weights over states and resample your list of particles
from this distribution.

Note the similarity of the observation update to likelihood weighting, where we again downweight
samples based on our evidence.

Let’s see if we can understand this process slightly better by example. Define a transition model for our
weather scenario using temperature as the time-dependent random variable as follows: for a particular tem-
perature state, you can either stay in the same state or transition to a state one degree away, within the range
[10,20]. Out of the possible resultant states, the probability of transitioning to the one closest to 15 is 80%
and the remaining resultant states uniformly split the remaining 20% probability amongst themselves.

Our temperature particle list was as follows:

[15,12,12,10,18,14,12,11,11,10]

To perform a time elapse update for the first particle in this particle list, which is in state Ti = 15, we need
the corresponding transition model:

Ti+1 14 15 16
P(Ti+1|Ti = 15) 0.1 0.8 0.1

In practice, we allocate a different range of values for each value in the domain of Ti+1 such that together
the ranges entirely span the interval [0,1) without overlap. For the above transition model, the ranges are as
follows:

CS 188, Spring 2024, Note 16 2

1. The range for Ti+1 = 14 is 0 ≤ r < 0.1.

2. The range for Ti+1 = 15 is 0.1 ≤ r < 0.9.

3. The range for Ti+1 = 16 is 0.9 ≤ r < 1.

In order to resample our particle in state Ti = 15, we simply generate a random number in the range [0,1) and
see which range it falls in. Hence if our random number is r = 0.467, then the particle at Ti = 15 remains in
Ti+1 = 15 since 0.1 ≤ r < 0.9. Now consider the following list of 10 random numbers in the interval [0,1):

[0.467,0.452,0.583,0.604,0.748,0.932,0.609,0.372,0.402,0.026]

If we use these 10 values as the random value for resampling our 10 particles, our new particle list after the
full time elapse update should look like this:

[15,13,13,11,17,15,13,12,12,10]

Verify this for yourself! The updated particle list gives rise to the corresponding updated belief distribution
B(Ti+1):

Ti 10 11 12 13 14 15 16 17 18 19 20
B(Ti+1) 0.1 0.1 0.2 0.3 0 0.2 0 0.1 0 0 0

Comparing our updated belief distribution B(Ti+1) to our initial belief distribution B(Ti), we can see that as
a general trend the particles tend to converge towards a temperature of T = 15.

Next, let’s perform the observation update, assuming that our sensor model P(Fi|Ti) states that the prob-
ability of a correct forecast fi = ti is 80%, with a uniform 2% chance of the forecast predicting any of the
other 10 states. Assuming a forecast of Fi+1 = 13, the weights of our 10 particles are as follows:

Particle p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

State 15 13 13 11 17 15 13 12 12 10
Weight 0.02 0.8 0.8 0.02 0.02 0.02 0.8 0.02 0.02 0.02

Then we aggregate weights by state:

State 10 11 12 13 15 17
Weight 0.02 0.02 0.04 2.4 0.04 0.02

Summing the values of all weights yields a sum of 2.54, and we can normalize our table of weights to
generate a probability distribution by dividing each entry by this sum:

State 10 11 12 13 15 17
Weight 0.02 0.02 0.04 2.4 0.04 0.02

Normalized Weight 0.0079 0.0079 0.0157 0.9449 0.0157 0.0079

The final step is to resample from this probability distribution, using the same technique we used to resam-
ple during the time elapse update. Let’s say we generate 10 random numbers in the range [0,1) with the
following values:

[0.315,0.829,0.304,0.368,0.459,0.891,0.282,0.980,0.898,0.341]

CS 188, Spring 2024, Note 16 3

This yields a resampled particle list as follows:

[13,13,13,13,13,13,13,15,13,13]

With the corresponding final new belief distribution:

Ti 10 11 12 13 14 15 16 17 18 19 20
B(Ti+1) 0 0 0 0.9 0 0.1 0 0 0 0 0

Observe that our sensor model encodes that our weather prediction is very accurate with probability 80%,
and that our new particles list is consisistent with this since most particles are resampled to be Ti+1 = 13.

Utilities
Throughout our discussion of rational agents, the concept of utility came up repeatedly. In games, for
example, Utility values are generally hard-wired into the game, and agents use these utility values to select
an action. We’ll now discuss what’s necessary in order to generate a viable utility function.

Rational agents must follow the principle of maximum utility - they must always select the action that
maximizes their expected utility. However, obeying this principle only benefits agents that have rational
preferences. To construct an example of irrational preferences, say there exist 3 objects, A, B, and C, and
our agent is currently in possession of A. Say our agent has the following set of irrational preferences:

• Our agent prefers B to A plus $1

• Our agent prefers C to B plus $1

• Our agent prefers A to C plus $1

A malicious agent in possession of B and C can trade our agent B for A plus a dollar, then C for B plus a
dollar, then A again for C plus a dollar. Our agent has just lost $3 for nothing! In this way, our agent can be
forced to give up all of its money in an endless and nightmarish cycle.

Let’s now properly define the mathematical language of preferences:

• If an agent prefers receiving a prize A to receiving a prize B, this is written A ≻ B

• If an agent is indifferent between receiving A or B, this is written as A ∼ B

• A lottery is a situation with different prizes resulting with different probabilities. To denote lottery
where A is received with probability p and B is received with probability (1− p), we write

L = [p, A; (1− p), B]

In order for a set of preferences to be rational, they must follow the five Axioms of Rationality:

• Orderability: (A ≻ B)∨ (B ≻ A)∨ (A ∼ B)
A rational agent must either prefer one of A or B, or be indifferent between the two.

• Transitivity: (A ≻ B)∧ (B ≻C)⇒ (A ≻C)
If a rational agent prefers A to B and B to C, then it prefers A to C.

CS 188, Spring 2024, Note 16 4

• Continuity: A ≻ B ≻C ⇒∃p [p, A; (1− p), C]∼ B
If a rational agent prefers A to B but B to C, then it’s possible to construct a lottery L between A
and C such that the agent is indifferent between L and B with appropriate selection of p.

• Substitutability: A ∼ B ⇒ [p, A; (1− p), C]∼ [p, B; (1− p), C]
A rational agent indifferent between two prizes A and B is also indifferent between any two
lotteries which only differ in substitutions of A for B or B for A.

• Monotonicity: A ≻ B ⇒ (p ≥ q ⇔ [p, A; (1− p), B]⪰ [q, A; (1−q), B]
If a rational agent prefers A over B, then given a choice between lotteries involving only A and B,
the agent prefers the lottery assigning the highest probability to A.

If all five axioms are satisfied by an agent, then it’s guaranteed that the agent’s behavior is describable as
a maximization of expected utility. More specifically, this implies that there exists a real-valued utility
function U that when implemented will assign greater utilities to preferred prizes, and also that the utility
of a lottery is the expected value of the utility of the prize resulting from the lottery. These two statements
can be summarized in two concise mathematical equivalences:

U(A)≥U(B) ⇔ A ⪰ B (1)

U([p1, S1; ... ; pn, Sn]) = ∑
i

piU(Si) (2)

If these constraints are met and an appropriate choice of algorithm is made, the agent implementing such
a utility function is guaranteed to behave optimally. Let’s discuss utility functions in greater detail with a
concrete example. Consider the following lottery:

L = [0.5, $0; 0.5, $1000]

This represents a lottery where you receive $1000 with probability 0.5 and $0 with probability 0.5. Now
consider three agents A1, A2, and A3 which have utility functions U1($x) = x, U2($x) =

√
x, and U3($x) = x2

respectively. If each of the three agents were faced with a choice between participting in the lottery and
receiving a flat payment of $500, which would they choose? The respective utilities for each agent of
participating in the lottery and accepting the flat payment are listed in the following table:

Agent Lottery Flat Payment
1 500 500
2 15.81 22.36
3 500000 250000

These utility values for the lotteries were calculated as follows, making use of equation (2) above:

U1(L) = U1([0.5, $0; 0.5, $1000]) = 0.5 ·U1($1000)+0.5 ·U1($0) = 0.5 ·1000+0.5 ·0 = 500

U2(L) = U2([0.5, $0; 0.5, $1000]) = 0.5 ·U2($1000)+0.5 ·U2($0) = 0.5 ·
√

1000+0.5 ·
√

0 = 15.81

U3(L) = U1([0.5, $0; 0.5, $1000]) = 0.5 ·U3($1000)+0.5 ·U3($0) = 0.5 ·10002 +0.5 ·02 = 500000

With these results, we can see that agent A1 is indifferent between participating in the lottery and receiving
the flat payment (the utilities for both cases are identical). Such an agent is known as risk-neutral. Similarly,
agent A2 prefers the flat payment to the lottery and is known as risk-averse and agent A3 prefers the lottery
to the flat payment and is known as risk-seeking.

CS 188, Spring 2024, Note 16 5

Decision Networks
In the third note, we learned about game trees and algorithms such as minimax and expectimax which we
used to determine optimal actions that maximized our expected utility. Then in the fifth note, we discussed
Bayes’ nets and how we can use evidence we know to run probabilistic inference to make predictions. Now
we’ll discuss a combination of both Bayes’ nets and expectimax known as a decision network that we can
use to model the effect of various actions on utilities based on an overarching graphical probabilistic model.
Let’s dive right in with the anatomy of a decision network:

• Chance nodes - Chance nodes in a decision network behave identically to Bayes’ nets. Each outcome
in a chance node has an associated probability, which can be determined by running inference on the
underlying Bayes’ net it belongs to. We’ll represent these with ovals.

• Action nodes - Action nodes are nodes that we have complete control over; they’re nodes representing
a choice between any of a number of actions which we have the power to choose from. We’ll represent
action nodes with rectangles.

• Utility nodes - Utility nodes are children of some combination of action and chance nodes. They
output a utility based on the values taken on by their parents, and are represented as diamonds in our
decision networks.

Consider a situation when you’re deciding whether or not to take an umbrella when you’re leaving for class
in the morning, and you know there’s a forecasted 30% chance of rain. Should you take the umbrella? If
there was a 80% chance of rain, would your answer change? This situation is ideal for modeling with a
decision network, and we do it as follows:

CS 188, Spring 2024, Note 16 6

As we’ve done throughout this course with the various modeling techniques and algorithms we’ve discussed,
our goal with decision networks is again to select the action which yields the maximum expected utility
(MEU). This can be done with a fairly straightforward and intuitive procedure:

• Start by instantiating all evidence that’s known, and run inference to calculate the posterior probabili-
ties of all chance node parents of the utility node into which the action node feeds.

• Go through each possible action and compute the expected utility of taking that action given the
posterior probabilities computed in the previous step. The expected utility of taking an action a given
evidence e and n chance nodes is computed with the following formula:

EU(a|e) = ∑
x1,...,xn

P(x1, ...,xn|e)U(a,x1, ...,xn)

where each xi represents a value that the ith chance node can take on. We simply take a weighted
sum over the utilities of each outcome under our given action with weights corresponding to the
probabilities of each outcome.

• Finally, select the action which yielded the highest utility to get the MEU.

Let’s see how this actually looks by calculating the optimal action (should we leave or take our umbrella) for
our weather example, using both the conditional probability table for weather given a bad weather forecast
(forecast is our evidence variable) and the utility table given our action and the weather:

Note that we have omitted the inference computation for the posterior probabilities P(W |F = bad), but we
could compute these using any of the inference algorithms we discussed for Bayes Nets. Instead, here we
simply assume the above table of posterior probabilities for P(W |F = bad) as given. Going through both
our actions and computing expected utilities yields:

CS 188, Spring 2024, Note 16 7

EU(leave|bad) = ∑
w

P(w|bad)U(leave,w)

= 0.34 ·100+0.66 ·0 = 34

EU(take|bad) = ∑
w

P(w|bad)U(take,w)

= 0.34 ·20+0.66 ·70 = 53

All that’s left to do is take the maximum over these computed utilities to determine the MEU:

MEU(F = bad) = max
a

EU(a|bad) = 53

The action that yields the maximum expected utility is take, and so this is the action recommended to us
by the decision network. More formally, the action that yields the MEU can be determined by taking the
argmax over expected utilities.

Outcome Trees
We mentioned at the start of this note that decision networks involved some expectimax-esque elements, so
let’s discuss what exactly that means. We can unravel the selection of an action corresponding to the one
that maximizes expected utility in a decision network as an outcome tree. Our weather forecast example
from above unravels into the following outcome tree:

The root node at the top is a maximizer node, just like in expectimax, and is controlled by us. We select
an action, which takes us to the next level in the tree, controlled by chance nodes. At this level, chance
nodes resolve to different utility nodes at the final level with probabilities corresponding to the posterior
probabilities derived from probabilistic inference run on the underlying Bayes’ net. What exactly makes
this different from vanilla expectimax? The only real difference is that for outcome trees we annotate our
nodes with what we know at any given moment (inside the curly braces).

CS 188, Spring 2024, Note 16 8

The Value of Perfect Information
In everything we’ve covered up to this point, we’ve generally always assumed that our agent has all the
information it needs for a particular problem and/or has no way to acquire new information. In practice, this
is hardly the case, and one of the most important parts of decision making is knowing whether or not it’s
worth gathering more evidence to help decide which action to take. Observing new evidence almost always
has some cost, whether it be in terms of time, money, or some other medium. In this section, we’ll talk
about a very important concept - the value of perfect information (VPI) - which mathematically quantifies
the amount an agent’s maximum expected utility is expected to increase if it observes some new evidence.
We can compare the VPI of learning some new information with the cost associated with observing that
information to make decisions about whether or not it’s worthwhile to observe.

General Formula
Rather than simply presenting the formula for computing the value of perfect information for new evidence,
let’s walk through an intuitive derivation. We know from our above definition that the value of perfect
information is the amount our maximum expected utility is expected to increase if we decide to observe new
evidence. We know our current maximum utility given our current evidence e:

MEU(e) = max
a ∑

s
P(s|e)U(s,a)

Additionally, we know that if we observed some new evidence e′ before acting, the maximum expected
utility of our action at that point would become

MEU(e,e′) = max
a ∑

s
P(s|e,e′)U(s,a)

However, note that we don’t know what new evidence we’ll get. For example, if we didn’t know the weather
forecast beforehand and chose to observe it, the forecast we observe might be either good or bad. Because
we don’t know what what new evidence e′ we’ll get, we must represent it as a random variable E ′. How
do we represent the new MEU we’ll get if we choose to observe a new variable if we don’t know what the
evidence gained from observation will tell us? The answer is to compute the expected value of the maximum
expected utility which, while being a mouthful, is the natural way to go:

MEU(e,E ′) = ∑
e′

P(e′|e)MEU(e,e′)

Observing a new evidence variable yields a different MEU with probabilities corresponding to the proba-
bilities of observing each value for the evidence variable, and so by computing MEU(e,E ′) as above, we
compute what we expect our new MEU will be if we choose to observe new evidence. We’re just about done
now - returning to our definition for VPI, we want to find the amount our MEU is expected to increase if we
choose to observe new evidence. We know our current MEU and the expected value of the new MEU if we
choose to observe, so the expected MEU increase is simply the difference of these two terms! Indeed,

V PI(E ′|e) = MEU(e,E ′)−MEU(e)

where we can read V PI(E ′|e) as "the value of observing new evidence E’ given our current evidence e".
Let’s work our way through an example by revisiting our weather scenario one last time:

CS 188, Spring 2024, Note 16 9

If we don’t observe any evidence, then our maximum expected utility can be computed as follows:

MEU(∅) = max
a

EU(a)

= max
a ∑

w
P(w)U(a,w)

= max{0.7 ·100+0.3 ·0,0.7 ·20+0.3 ·70}
= max{70,35}
= 70

Note that the convention when we have no evidence is to write MEU(∅), denoting that our evidence is the
empty set. Now let’s say that we’re deciding whether or not to observe the weather forecast. We’ve already
computed that MEU(F = bad) = 53, and let’s assume that running an identical computation for F = good
yields MEU(F = good) = 95. We’re now ready to compute MEU(e,E ′):

MEU(e,E ′) = MEU(F)

= ∑
e′

P(e′|e)MEU(e,e′)

= ∑
f

P(F = f)MEU(F = f)

= P(F = good)MEU(F = good)+P(F = bad)MEU(F = bad)

= 0.59 ·95+0.41 ·53

= 77.78

Hence we conclude V PI(F) = MEU(F)−MEU(∅) = 77.78−70 = 7.78 .

Properties of VPI
The value of perfect information has several very important properties, namely:

• Nonnegativity. ∀E ′,e V PI(E ′|e)≥ 0
Observing new information always allows you to make a more informed decision, and so your max-
imum expected utility can only increase (or stay the same if the information is irrelevant for the
decision you must make).

• Nonadditivity. V PI(E j,Ek|e) ̸=V PI(E j|e)+V PI(Ek|e) in general.
This is probably the trickiest of the three properties to understand intuitively. It’s true because gen-
erally observing some new evidence E j might change how much we care about Ek; therefore we

CS 188, Spring 2024, Note 16 10

can’t simply add the VPI of observing E j to the VPI of observing Ek to get the VPI of observing
both of them. Rather, the VPI of observing two new evidence variables is equivalent to observing
one, incorporating it into our current evidence, then observing the other. This is encapsulated by the
order-independence property of VPI, described more below.

• Order-independence. V PI(E j,Ek|e) =V PI(E j|e)+V PI(Ek|e,E j) =V PI(Ek|e)+V PI(E j|e,Ek)
Observing multiple new evidences yields the same gain in maximum expected utility regardless of the
order of observation. This should be a fairly straightforward assumption - because we don’t actually
take any action until after observing any new evidence variables, it doesn’t actually matter whether
we observe the new evidence variables together or in some arbitrary sequential order.

CS 188, Spring 2024, Note 16 11

