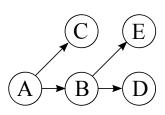
Q1. Bayes Nets: Variable Elimination



	P(A)	P(B A)	+b	-b
+ <i>a</i>	0.25	+ <i>a</i>	0.5	0.5
-a	0.75	<i>−a</i>	0.25	0.75

P(D B)	+d	-d
+b	0.6	0.4
-b	0.8	0.2

P(C A)	+c	-c
+a	0.2	0.8
-a	0.6	0.4

P(E B)	+ <i>e</i>	-е
+b	0.25	0.75
-b	0.1	0.9

(a) Using the Bayes' Net and conditional probability tables above, calculate the following quantities:

(i)
$$P(+b|+a) =$$

(ii)
$$P(+a, +b) =$$

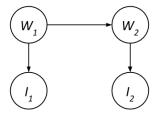
(iii)
$$P(+a|+b) =$$

- (b) Now we are going to consider variable elimination in the Bayes' Net above.
 - (i) Assume we have the evidence +c and wish to calculate $P(E \mid +c)$. What factors do we have initially?
 - (ii) If we eliminate variable B, we create a new factor. What probability does that factor correspond to?
 - (iii) What is the equation to calculate the factor we create when eliminating variable B?
 - (iv) After eliminating variable B, what are the new set of factors? As in (ii), write the probabilities that the factors represent. For each factor, also provide its size.

- (v) Now assume we have the evidence -c and are trying to calculate P(A|-c). What is the most efficient elimination ordering? If more than one ordering is most efficient, provide any one of them.
- (vi) Once we have run variable elimination and have f(A, -c) how do we calculate $P(+a \mid -c)$?

Q2. Sampling in Bayes Nets

We would like to analyze people's ice cream eating habits on sunny and rainy days. Suppose we consider the weather, along with a person's ice-cream eating, over the span of two days. We'll have four random variables: W_1 and W_2 stand for the weather on days 1 and 2, which can either be rainy R or sunny S, and the variables I_1 and I_2 represent whether or not the person ate ice cream on days 1 and 2, and take values T (for truly eating ice cream) or F. We can model this as the following Bayes Net with these probabilities.



$P(W_1)$
0.6
0.4

1	$\overline{W_1}$	W_2	$P(W_2 W_1)$
	S	S	0.7
	S	R	0.3
	R	S	0.5
	R	R	0.5

W	I	P(I W)
S	T	0.9
S	F	0.1
R	T	0.2
R	F	0.8

Suppose we produce the following samples of (W_1, I_1, W_2, I_2) from the ice-cream model:

- (a) Using these samples, what is our estimate of $P(W_2 = \mathbb{R})$?
- (b) Cross off samples above which are rejected by rejection sampling if we're trying to estimate $P(W_2|I_1 = T, I_2 = F)$

Rejection sampling seems to be wasting a lot of effort, so we decide to switch to likelihood weighting. Assume we generate the following six samples for (W_1, I_1, W_2, I_2) , given the evidence $I_1 = T$ and $I_2 = F$:

(S, T, R, F)

(R, T, R, F)

 $(S, T, R, F) \qquad (S, T, S, F)$

(S, T, S, F)

(R, T, S, F)

(c) Calculate the weight of each sample.

(d) Estimate $P(W_2|I_1 = T, I_2 = F)$ using our likelihood weights from the previous part.

Q3. Bayes Nets: Inference

Consider the following Bayes Net, where we have observed that D = +d.

P((A)
+a	0.5
-a	0.5

P(B A)			
+ <i>a</i>	+b	0.5	
+a	-b	0.5	
-a	+b	0.2	
-a	-b	0.8	

P(C A,B)				
+ <i>a</i>	+b	+c	0.8	
+ <i>a</i>	+b	-c	0.2	
+ <i>a</i>	-b	+c	0.6	
+ <i>a</i>	-b	-c	0.4	
- <i>a</i>	+b	+c	0.2	
-a	+b	-c	0.8	
-a	-b	+c	0.1	
-a	-b	-c	0.9	

P(D C)				
+c	+d	0.4		
+c	-d	0.6		
-c	+d	0.2		
-c	-d	0.8		

- (a) Below is a list of samples that were collected using prior sampling. Mark the samples that would be **rejected** by rejection sampling.
- (b) To decouple from the previous part, you now receive a *new* set of samples shown below:

Estimate the probability P(+a|+d) if these new samples were collected using...

- (i) ... rejection sampling: (ii) ... likelihood weighting:
- (c) Instead of sampling, we now wish to use variable elimination to calculate P(+a|+d). We start with the factorized representation of the joint probability:

$$P(A, B, C, +d) = P(A)P(B|A)P(C|A, B)P(+d|C)$$

(i) We begin by eliminating the variable B, which creates a new factor f_1 . Complete the expression for the factor f_1 in terms of other factors.

*f*₁(______) = ____

(ii) After eliminating B to create a factor f_1 , we next eliminate C to create a factor f_2 . What are the remaining factors after both *B* and *C* are eliminated?

 $\bigcap p(A)$

(iii) After eliminating both B and C, we are now ready to calculate P(+a|+d). Write an expression for P(+a|+d) in terms of the remaining factors.

 $P(+a|+d) = \underline{\hspace{1cm}}$