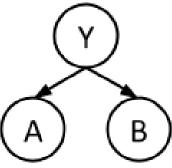

CS 188 Spring 2025

Regular Discussion 9

1 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1 = a, O_2 = b)$. Here's the HMM again. O_1 and O_2 are supposed to be shaded.

We start with two particles representing our distribution for W_1 . $P_1: W_1 = 0$ $P_2: W_1 = 1$ Use the following random numbers to run particle filtering:


[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

- (a) **Observe**: Compute the weight of the two particles after evidence $O_1 = a$.
- (b) Resample: Using the random numbers, resample P_1 and P_2 based on the weights.
- (c) **Predict**: Sample P_1 and P_2 from applying the time update.
- (d) Update: Compute the weight of the two particles after evidence $O_2 = b$.
- (e) **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.
- (f) What is our estimated distribution for $P(W_2|O_1 = a, O_2 = b)$?

2 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	1	1	1	1	0	1	0	1	1	1
V 1 1 0 0 0 1 1 0 0 0	B	1	0	0	1	1	1	1	0	1	1
Y 1 1 0 0 0 1 1 0 0 0	Y	1	1	0	0	0	1	1	0	0	0

1. What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

		A	Y	P(A Y)	В	Y	P(B Y)
Y	P(Y)	0	0		0	0	
0		1	0		1	0	
1		0	1		0	1	
		1	1		1	1	

2. Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?

3. Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k = 2.

A	Y	P(A Y)
0	0	
1	0	
0	1	
1	1	