Spring 2025 Regular Discussion 11 Solutions

| Optimization

We would like to classify some data. We have N samples, where each sample consists of a feature vector
x = [z1, -+ ,7x)T and a label y € {0, 1}.

Logistic regression produces predictions as follows:
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where s(7) is the logistic function, expz = €%, and w = [wy, -+ ,wy]|T are the learned weights.

Let’s find the weights w; for logistic regression using stochastic gradient descent. We would like to minimize
the following loss function (called the cross-entropy loss) for each sample:

L=—[ylnh(x)+ (1 —y)In(l - h(x))]

(a) Show that s'(7) = s(+)(1 - s(+)) |
5(7) = (1 + exp(—7))
5'(7) = —(1 + exp(—))~2(— exp(—7))

$() = 1 - exp(—y)
7 14exp(—y) 1+exp(—7)

$(7) = s()(1 - s(7)

(b) Find #£-. Use the fact from the previous part.
J

Use chain rule:

dL B 1—y ; S
dw, [ Z WiT)Tj — T T—h (Z: LLZKLl)‘L]‘|
Use fact from previous part:
dL Yy 1—y
—— = — | = ) (1 = h(x))a; — == h(x)(1 = h(x))z;
dw; {h(x) h(x)( h(x))z; — 1— h(x )}( )( h(X))l]}
Simplify:
dL
R 1— 1 _
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= —x;[y — yh(x) — h(x) + yh(x)]
= —z,(y — h(x))



(¢) Now, find a simple expression for VL = [d%l’ %, . %]T

Vwl = [~21(y — h(x)), —22(y = h(x)), ... —zx(y — h(x))]"
= —[.7)1, o, xk]T(y - h(X))
= —x(y — h(x))

(d) Write the stochastic gradient descent update for w. Our step size is 7.

w <+ w + nx(y — h(x))



Y Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here z is a
single real-valued input feature with an associated class y* (0 or 1). There are two weight parameters w; and
ws, and non-linearity functions g; and go (to be defined later, below). The network will output a value as
between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be
defined later, below), to compare the prediction as with the true class y*.
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1. Perform the forward pass on this network, writing the output values for each node z1,a1, 22 and as in
terms of the node’s input values:

Z1 = T *x Wy

a1 = gi1(z1)
Z9 = A1 * Wa
az = 92(22)

2. Compute the loss Loss(az,y*) in terms of the input z, weights w;, and activation functions g;:

Recursively substituting the values computed above, we have:

Loss(az,y") = Loss(ga(ws * g1(wy *xx)),y")

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive %Li;js.
Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be

helpful; you may use any of those variables.)

OLoss  0Loss Oag 029

Ows Oas Ozy Ows




4. Suppose the loss function is quadratic, Loss(az,y*) = %(ag—y*)2, and g1 and g, are both sigmoid functions
g(z) = l-r% (note: it’s typically better to use a different type of loss, cross-entropy, for classification
problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that 8%(;) = g(2)(1 — g(z)) for the sigmoid function, write

% in terms of the values from the forward pass, y*, a1, and as:
w2

First we’ll compute the partial derivatives at each node:
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6%2 _ 9;52) = g2(22)(1 — g2(22)) = aa(1 — az)
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Now we can plug into the chain rule from part 3:
OLoss  OLoss Day 0z
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= (ag —y") xaz(1 —az) * a;

5. Now use the chain rule to derive %L—Iifs as a product of partial derivatives at each node used in the chain

rule: .
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a’wl - aaz 822 6@1 021 8w1

6. Finally, write agifs in terms of z,y*, w;, a;, z;:  The partial derivatives at each node (in addition to the

ones we computed in Part 4) are:
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Plugging into the chain rule from Part 5 gives:
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= (ag —y") *az(l —ag) xwyxa1(l —ay) *x

7. What is the gradient descent update for w; with step-size « in terms of the values computed above?

wy  wy — afag —y*) xas(l —ag) xwe xay (1 —ay) *x



