1 Optimization

We would like to classify some data. We have N samples, where each sample consists of a feature vector $\mathbf{x} = [x_1, \dots, x_k]^T$ and a label $y \in \{0, 1\}$.

Logistic regression produces predictions as follows:

$$P(Y = 1 \mid X) = h(\mathbf{x}) = s\left(\sum_{i} w_{i} x_{i}\right) = \frac{1}{1 + \exp(-(\sum_{i} w_{i} x_{i}))}$$
$$s(\gamma) = \frac{1}{1 + \exp(-\gamma)}$$

where $s(\gamma)$ is the logistic function, $\exp x = e^x$, and $\mathbf{w} = [w_1, \cdots, w_k]^T$ are the learned weights.

Let's find the weights w_j for logistic regression using stochastic gradient descent. We would like to minimize the following loss function (called the cross-entropy loss) for each sample:

$$L = -[y \ln h(\mathbf{x}) + (1 - y) \ln(1 - h(\mathbf{x}))]$$

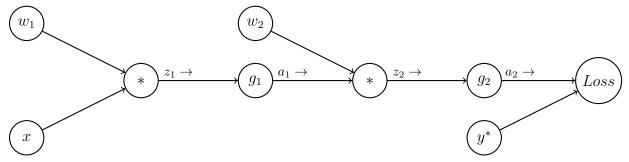
(a) Show that $s'(\gamma) = s(\gamma)(1 - s(\gamma))$

(b) Find $\frac{dL}{dw_j}$. Use the fact from the previous part.

- (c) Now, find a simple expression for $\nabla_{\mathbf{w}} L = \left[\frac{dL}{dw_1}, \frac{dL}{dw_2}, ..., \frac{dL}{dw_k}\right]^T$
- (d) Write the stochastic gradient descent update for w. Our step size is η .

2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued input feature with an associated class y^* (0 or 1). There are two weight parameters w_1 and w_2 , and non-linearity functions g_1 and g_2 (to be defined later, below). The network will output a value a_2 between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be defined later, below), to compare the prediction a_2 with the true class y^* .



1. Perform the forward pass on this network, writing the output values for each node z_1, a_1, z_2 and a_2 in terms of the node's input values:

- 2. Compute the loss $Loss(a_2, y^*)$ in terms of the input x, weights w_i , and activation functions g_i :
- 3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial Loss}{\partial w_2}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

4.	Suppose the loss function is quadratic, $Loss(a_2, y^*) = \frac{1}{2}(a_2 - y^*)^2$, and g_1 and g_2 are both sigmoid functions
	$g(z) = \frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, cross-entropy, for classification
	problems, but we'll use this to make the math easier).

Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z))$ for the sigmoid function, write $\frac{\partial Loss}{\partial w_2}$ in terms of the values from the forward pass, y^* , a_1 , and a_2 :

- 5. Now use the chain rule to derive $\frac{\partial Loss}{\partial w_1}$ as a product of partial derivatives at each node used in the chain rule:
- 6. Finally, write $\frac{\partial Loss}{\partial w_1}$ in terms of x, y^*, w_i, a_i, z_i :

7. What is the gradient descent update for w_1 with step-size α in terms of the values computed above?