CS 188 Spring 2025

Intro to Artificial Intelligence Final Exam

Print Your Na	me:											
Print Your Stu	dent ID:											
TRINT TOUT OLU	dent 1D											
Print Student	name to you	r left:										
Print Student	name to you	r right	t:									
Von horre 170 m	inutes Them			.t:	of		d:t	(100		. + - + - 1	`	
You have 170 m	imutes. There	e are s	ques	tions	or var	ymg	crean.	(100	рошь	totai	<i>,</i>	•
	Question:	1	2	3	4	5	6	7	8	9	Total	
	Points:	10	9	9	14	15	11	8	14	10	100	
We reserve the	right to dedu	ıct po	ints fo	or fail	ing to	follov	w the	marki	ng dii	ection	ns below:	
For questions was select only one		bubb	oles, y	ou m	ay		quest ect on			-		oxes , you may
O Unselecte	ed option (Co	mplet	ely u	nfilled	l)		You	ı can	select			
⊘ Don't do	this (it will b	e grad	ded as	incor	rect!)	I	mu	ltiple	squar	es		
Only one	selected opti	ion (co	omple	tely fi	illed)	[V Do	n't do	this ((it wil	l be grade	ed as incorrect!)
Anything you vanswers, your a worst interpret	answer is am				•					_	•	ı write multiple e will grade the
Read the honor	code below	and si	ign yo	ur na	me.							
	aterials, nor o	collab	orated	l with	anyo	ne els	e on t	his ex	am. I	unde	rstand tha	eferenced any at if I cheat on t Conduct.
Sign your nam	e:											

Q1 Counting Calories

(10 points)

Consider a variant of Pacman where each food dot has a different *calorie count*. Each food dot's calorie count is a strictly positive integer. Each food dot that Pacman eats adds to his total calorie count (C).

When Pacman moves into a square with a dot, he automatically eats the dot as part of that action. All actions cost 1.

actions cost 1.			
Pacman's goal is to eat at least 1	10 calories in total, i.e. re	each a state where	$C \ge 10.$
Q1.1 (3 points) Select all admiss	ible heuristics for this pr	oblem.	
\square C		☐ Euclidean d	istance to the nearest dot.
\square 10 - C		Sum of Eucl	lidean distances to all dots.
☐ Manhattan distance	to the nearest dot.	O None of the	above
Sum of Manhattan d	istances to all dots.		
For each of the next three subpa search algorithm will find the o	•		
Hint: Recall that expanding a sta	ate means calling the suc	ecessor function of	n that state.
For all subparts, when calling the successor state. This means that		-	
Q1.2 (2 points) A 1×11 grid wi	ith 10 dots, each worth 1	calorie. Pacman s	tarts in the leftmost square.
	P • • • • •]
☐ DFS tree search	☐ BFS tree se	arch	O None of the above
Q1.3 (2 points) A 1×11 grid wi	ith 10 dots, each worth 1	calorie. Pacman s	tarts in the middle square.
	• • • • P]
☐ DFS tree search	☐ BFS tree se	earch	O None of the above
Q1.4 (2 points) A 1×5 grid with	h a single 10-calorie dot.	The dot is at the r	ight, and Pacman is at the left
	Р	•	
☐ DFS tree search	☐ BFS tree se	arch	O None of the above
Q1.5 (1 point) UCS where all act	tions cost 1 is always equ	uivalent to which	search algorithm?
O BFS	O DFS	O A*	O None

$\mathbf{Q}\mathbf{2}$ Constrained Staff Photos

(9 points)

Four CS 188 TAs want to line up to take staff photos, and Pacman wants to assign each TA to one position.

There are 6 possible positions for TAs to stand, numbered 1 through 6 from left to right. The TAs are the variables, and the positions are the values.

No two TAs can stand in the same position. Not all positions need to be assigned to a TA.

The TAs have special requests:

- Advika (A) does not want anyone to stand directly to her left or right.
- Josh (J) does not want to stand in the leftmost or rightmost position.
- Michael (*M*) wants to stand directly next to Josh.
- Saathvik (S) does not want to stand directly next to Josh.

Two example assignments are shown below. The invalid assignment violates Advika's, Josh's, and Michael's requests, though Saathvik's request is satisfied.

Valid:	$oxed{A \mid M \mid J \mid}$		Invalid: J				
	1 2 3 4	5 6	1 2 3	4 5 6			
Q2.1 (1 point) Which	type of constrain	t can be used to	represent Advika's	request in a single constraint?			
O Unary		O Binary		O Higher-order			
Q2.2 (1 point) Which type of constraint can be used to represent Josh's request in a single constraint?							
O Unary	○ Unary ○ Binary			O Higher-order			
Q2.3 (2 points) For th	is subpart, no var	iables are assign	ed, and every varial	ble's domain is $\{1,2,3,4,5,6\}$			
	CV (least constrain CV could assign to		forward checking to	o assign Advika first. Select all			
<u> </u>	_ 2	<u> </u>	4	□ 5 □ 6			
For the next two subparts, consider the partial assignment and domains below:							
1 2 3	4 5 6	$J: \{2, 3, 4\}$	$M:\{1,3,4\}$	$S:\{1,3,4\}$			
Q2.4 (2 points) Pacm	an runs arc consi	stency to check t	the arc $(S \to J)$.				

Q2.5 (3 points) Suppose Pacman runs the arc consistency algorithm covered in lecture (AC-3). Select all arcs that are enqueued after processing the $(S \to J)$ arc.

|--|--|

 \square 1

$$\square (J \to M)$$

Select all values that **remain** in the domain of S.

 \square 3

$$\square (M \to S)$$

 $\prod 4$

$$\square$$
 $(S \to J)$

$$\square$$
 $(M \to J)$

$$\square$$
 $(S \to M)$

O None of the above

Pranay and Catherine are playing a game. Pranay acts as a standard maximizer (represented by triangles), and Catherine is represented by hexagonal nodes. Catherine chooses an action that minimizes some function f applied to each of the child nodes.

For example:

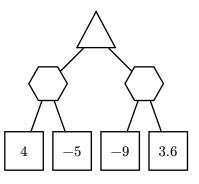
- If f(x) = x, then Catherine acts as a standard minimizer.
- If f(x) = -x, then Catherine acts as a standard maximizer.
- If f(x) = 0, then Catherine randomly selects an action, since she will see each of her children as having an equal value of 0.

Assumptions:

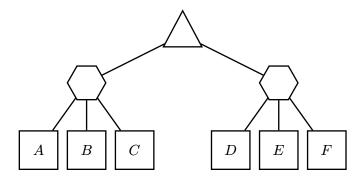
- Pranav always knows Catherine's strategy and acts optimally.
- Terminal nodes are labeled with Pranav's utility, not Catherine's utility.
- Unless otherwise stated, terminal nodes are unbounded (can take any real value).

Q3.1 (1 point) For this subpart only, consider the tree to the right:

If Catherine chooses an action that minimizes the function


$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

what utility does Pranav receive in this game tree, assuming he acts optimally?


 $\bigcirc 4$

 $\bigcirc -5$ $\bigcirc -9$

 \bigcirc 3.6

Q3.2 (2 points) For this subpart only, consider the tree below:

If Catherine chooses an action that minimizes the function

$$f(x) = (x-188)^2$$

what values of A make it possible to prune B? If no values of A cause B to be pruned, leave both boxes blank and bubble None.

Assume that nodes are evaluated from left to right, and we prune on equality.

 $\leq A \leq$ O None

(Question	3	continued)

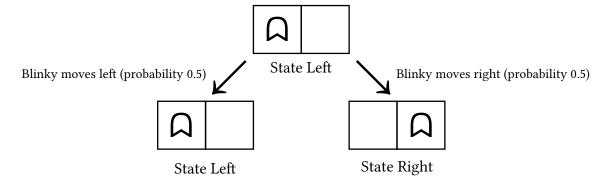
For the remaining subparts, consider any game tree with alternating maximizer and hexagonal nodes, not necessarily the tree above.

Assumptions for the remaining subparts:

- Both Pranav and Catherine evaluate the entire game tree (no depth-limiting).
- No alpha-beta pruning takes place.

O None of the above

Q3.3 (2 points) Catherine minimizes the same function f as above:


For some given game tree, Pranav's utility when Catherine minimizes
$$f(x) = (x-188)^2$$
 is ______ strictly less than Pranav's utility when Catherine is a standard minimizer. O always O sometimes O never O n

Q4 Busted! (14 points)

Consider a 1×2 grid where Blinky can be in the left or right square. At each time step, Blinky will move left with probability 0.5 or move right with probability 0.5. If the move would result in Blinky moving off the grid, Blinky stays in the same position.

State Left represents Blinky in the left square, and state Right represents Blinky in the right square.

An example is shown below that starts in state Left.

Pacman is trying to defeat Blinky and has 3 possible actions: Bust Left, Bust Right, and Don't Bust. Note that Pacman does not have control over Blinky.

Bust Left and Bust Right give a reward of +1 for busting correctly (the same square as Blinky), and -1 for busting incorrectly. The Bust Left and Bust Right actions transition into a terminal state X where no further actions or rewards are available, regardless of whether the bust was correct.

The **Don't Bust** action gives a reward of 0. Then, Blinky moves left or right, and Pacman can take another action.

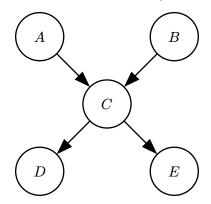
Q4.1 (4 points) Fill in the table for the transition and reward functions (some rows have been omitted). If a transition (s, a, s') occurs with probability 0, write "N/A" in the box for R(s, a, s').

s	a	s'	T(s,a,s')	R(s,a,s')
Left	Bust Left	Left		
Left	Bust Left	Right		
Left	Bust Left	X		
Left	Bust Right	X		
Right	Bust Left	X		
Right	Bust Right	X		
Right	Don't Bust	Left		
Right	Don't Bust	Х		

(Ques	stion 4 contir	nued)					
Q4.2	(2 points) I	f we were to	also include	e the omitted r	ows, how ma	any rows are in the	full table?
	Note: Inclu	de rows whe	re $T(s,a,s^\prime)$	') = 0.			
	O 8		12	O 18		O 24	O 30
Q4.3	probability	p and is in t	he Right s	-	obability 1 –	Blinky is in the L p . Recall that Blin	-
	After one t	ime step, witl	n what prob	oability does P	acman believ	e Blinky is in the L	eft square?
	\bigcirc 0	O 0	.5p	$\bigcap p$	$\bigcirc 0.5$	$\bigcirc 1-p$	O 1
	he remaining sy's location		suppose Pa	cman observe	s an imperfe	ct sensor to gain in	nformation about
		-		servation (o_t) rath probability		xy's location (s_t) wi	th probability 0.7
Q4.4	(2 points) F	Fill in the tabl	e for $P(O_t$	$\mid S_t).$			
	o_t	s_t	$P(o_t \mid s_t)$	$_{t})$	1		
	Left	Left]		
	Left	Right]		
	Right	Left			1		
	Right	Right					
Q4.5	$\gamma < 1$. What			ts that Blinky given this obse	rvation?	et square and the d	
	<u> </u>				•	O 1	

 $\bigcirc 0$

 \bigcirc 0.3


 $\bigcirc 0.4$

 $\bigcirc 0.5$

 $\bigcirc 0.7$

O 1

Consider the Bayes net below. Each random variable is binary (has two possible values).

Suppose we want to compute $P(B \mid +e)$, using variable elimination.

Q5.1 (1 point) We join and eliminate on A first.

What is the size of the factor generated when we join on A (but before we eliminate on A)?

Note: The size of a factor denotes the number of rows in its CPT.

- $\bigcirc 2^1$ $\bigcirc 2^2$ $\bigcirc 2^3$
- $\bigcirc 2^4$
- \bigcirc 2⁵

Q5.2 (1 point) We join and eliminate on D next.

What is the size of the factor generated when we join on D (but before we eliminate on D)?

- $\bigcirc 2^0$
- \bigcirc 2¹ \bigcirc 2² \bigcirc 2³ \bigcirc 2⁴

- $\bigcirc 2^5$

Q5.3 (1 point) We join and eliminate on C first next (was clarified on the exam).

What is the size of the factor generated when we join on C (but before we eliminate on C)?

- $\bigcirc 2^0$
- $\bigcirc 2^1$

- $\bigcirc 2^4$
- $\bigcirc 2^5$

Regardless of your previous answers, suppose that the remaining factors after eliminating A, D, and Care f(B, +e) and P(B). Fill in the expression below to derive the desired probability $P(B \mid +e)$.

$$\frac{(i)}{\sum\limits_{(ii)}(iii)}$$

Q5.4 (1 point) Fill in blank (i).

- $\bigcirc \ f(B,+e) \ P(B) \qquad \bigcirc \ f(B,+e) \qquad \bigcirc \ f(b,+e) \ P(b) \qquad \bigcirc \ f(b,+e)$

Q5.5 (1 point) Fill in blank (ii).

 $\bigcirc b$

 $\bigcirc b, e$

 $\bigcirc e$

Q5.6 (2 points) Fill in blank (iii).

- $\bigcap f(B,+e) P(B)$ $\bigcap f(B,+e)$ $\bigcap f(b,+e) P(b)$

(Question 5 continued	1)						
Now, suppose we w	Now, suppose we want to estimate $P(B \mid +e)$ using sampling.						
	e use rejection sam Select all that apply.	pling, which of these	variable orders o	can be used to produce a			
$\square A, B, C,$	$\square A, B, C, D, E \qquad \qquad \square B, A, C, E, D \qquad \qquad \square C, B, A, E, D$						
$\square D, E, A,$	B, C		0	None of the above			
Q5.8 (2 points) Supp	Q5.8 (2 points) Suppose $P(+e \mid +c) = P(+e \mid -c) = 0.001$, and $P(-e \mid +c) = P(-e \mid -c) = 0.999$.						
If we use likel	ihood weighting, v	what are the weights o	f the samples pro	oduced?			
O All samp	eles have weight 0.00	01.					
O All samp	O All samples have weight 0.999.						
()	\bigcirc Some Most (was clarified on the exam) samples have weight 0.001, and the remaining samples all have weight 0.999.						
	\bigcirc Some Most (was clarified on the exam) samples have weight 0.999, and the remaining samples all have weight 0.001.						
	ardless of your preves that all have the s		er a scenario wh	ere likelihood weighting			
_	many samples generatimate for $P(+b \mid +$		eighting. Select a	ll strategies that compute			
☐ Number	of samples with $+b$,	divided by total numb	er of samples.				
☐ Number	of samples with $+e$,	divided by total numb	er of samples.				
☐ Sum of v	veights of all sample	s with $+b$, divided by	sum of weights o	of all samples.			
☐ Sum of v	veights of all sample	s with $+e$, divided by	sum of weights o	of all samples.			
O None of	O None of the above						
Q5.10 (2 points) For t	his subpart only, sup	pose we want to estima	ate $P(+e \mid +a)$ u	using rejection sampling.			
_		each variable, one at bles being rejected as e		f the following variables,			
$\bigcirc A$	\bigcirc B	\bigcirc C	$\bigcirc D$	$\bigcirc E$			

Blinky is taking an exam and considers the utility of cheating. We model his thought process as follows:

1. Blinky chooses his level of cheating L, which is a real number from 0 to 1.

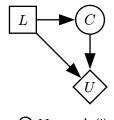
For example, L=0 represents no cheating, L=1 represents the most cheating, and L=0.7represents a lot of cheating.

2. After the exam, Blinky is either caught (+c) or not caught (-c). The value of C is sampled from a probability distribution $P(C \mid L)$.

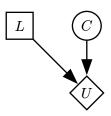
The probability that Blinky is caught is $P(+c \mid L) = L$, and $P(-c \mid L) = 1 - L$.

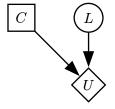
- 3. If Blinky is caught, he receives utility -50. If Blinky is not caught, he receives utility 10 + 100L.
- Q6.1 (1 point) What is Blinky's expected utility if L=0?
 - \bigcirc -50
- \bigcirc -40
- \bigcirc 5
- \bigcirc 60
- \bigcirc 100
- \bigcirc 110

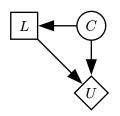
- Q6.2 (1 point) What is Blinky's expected utility if L = 1?
 - O-50
- O 40 O 5
- \bigcirc 60
- \bigcirc 100
- \bigcirc 110


- Q6.3 (2 points) What is Blinky's expected utility if L = 0.5?
 - O 50
- \bigcirc -40
- \bigcirc 5
- \bigcirc 10
- \bigcirc 60
- \bigcirc 100
- \bigcirc 110

Q6.4 (3 points) What L maximizes Blinky's utility?


Hint: A quadratic $ax^2 + bx + c$ achieves its maximum (assuming one exists) at $x = -\frac{b}{2a}$.


- Q6.5 (2 points) Blinky's MEU (maximum expected utility) is 14. What does this number represent?
 - \bigcirc If Blinky takes the exam many times, all with the optimal L, he receives utility 14 on average.
 - \bigcirc If Blinky takes the exam many times, all with the optimal L, he always receives utility 14.
 - \bigcirc When Blinky takes the exam with optimal L, the highest utility he can ever receive is 14.
 - \bigcirc When Blinky takes the exam with optimal L, the lowest utility he can ever receive is 14.
- Q6.6 (2 points) Which decision network best models this scenario?


O Network (i)

O Network (ii)

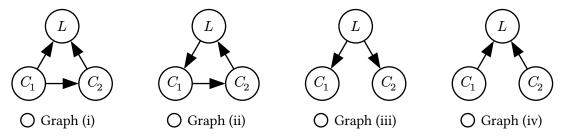
O Network (iii)

O Network (iv)

Q7 On the Run (8 points)

Oh no! Blinky was caught cheating on his exam and is now trying to escape! At any given time, Blinky's location (L) is either Dwinelle, VLSB, or Stanford.

We want to compute a belief distribution over Blinky's location using particle filtering.


Q7.1 (2 points) Suppose we use 10 particles. We pause the particle filtering algorithm immediately after an observation update.

Which statement implies that L = Stanford with probability 0.9 at this time step?

- O There are exactly 9 particles at Stanford.
- O We add up the un-normalized weights of all the particles at Stanford, and the sum is 9.0.
- We add up the un-normalized weights of all the particles at Stanford, and the sum is 0.9.
- O We add up the normalized weights of all the particles at Stanford, and the sum is 0.9.

Suppose there are two cameras (C_1, C_2) that are conditionally independent given L. We are only able to observe Blinky's location using these cameras.

Q7.2 (2 points) Which graph always represents the scenario where C_1 and C_2 are conditionally independent given L?

Q7.3 (2 points) In the observation update, how do we calculate the weight w of a particle?

$$\bigcirc \ w \leftarrow P(\ell \mid c_1) \cdot P(\ell \mid c_2)$$

$$\bigcirc \ w \leftarrow P(c_1 \mid \ell) \cdot P(c_2 \mid \ell)$$

$$\bigcirc w \leftarrow P(c_1, c_2 \mid \ell) \cdot P(\ell)$$

$$\bigcirc w \leftarrow P(c_1 \mid \ell) \cdot P(c_2 \mid c_1)$$

Q7.4 (2 points) At some time during the particle filtering algorithm, we have the four weighted particles shown on the right.

During the re-sampling step, what is the probability that a newly re-sampled particle is at Stanford?

O 1/8

 $\bigcirc 1/4$

 $\bigcirc 1/2$

 $\bigcirc 1$

	Location (L)	Weight
Particle 1:	Dwinelle	0.4
Particle 2:	Stanford	0.2
Particle 3:	Dwinelle	0.9
Particle 4:	VLSB	0.1

Q8.1 (2 points) Select all true statements al	oout the Sigmoid function (shown below).
	$\operatorname{Sigmoid}(x) = \frac{1}{1 + e^{-x}}$

Sigmoid outputs values between 0 and 1. Sigmoid is monotonically increasing.

☐ Sigmoid is linear. O None of the above

☐ Sigmoid is non-negative.

For the next two subparts, a perceptron classifier has the following weight vectors for three classes ("Sports", "Music", "Books"):

 $w_{\text{Sports}} = [5, 4, 5]$

 $w_{\mathrm{Music}} = [3, 8, 2]$

 $w_{\text{Rooks}} = [2, 3, 4]$

Now, the classifier is updated a single time, using a new data point with feature vector [1, -1, 2] and class "Books".

Q8.2 (2 points) What are the new weights for w_{Music} after the update?

 $\bigcirc [6,3,7]$ $\bigcirc [4,5,3]$ $\bigcirc [3,8,2]$

 $\bigcirc [3, 2, 6]$

 $\bigcirc [5,4,5]$ $\bigcirc [4,7,4]$ $\bigcirc [2,9,0]$

 \bigcirc [2, 3, 4]

Q8.3 (2 points) What are the new weights for $w_{
m Books}$ after the update?

 \bigcirc [6, 3, 7]

 \bigcirc [4, 5, 3]

 \bigcirc [3, 8, 2]

 \bigcirc [3, 2, 6]

 \bigcirc [5, 4, 5]

 $\bigcirc \ [4,7,4]$

 $\bigcirc [2, 9, 0]$

 \bigcirc [2, 3, 4]

In the next two subparts, consider a naive Bayes classifier for emails, just like the one from lecture. The classes are "Ham" and "Spam".

Each email is featurized into a 3-element feature vector using the binary bag-of-words model with words "Free", "Money", and "Now". For example, the email "hello money" is featurized into [0, 1, 0], and the email "now now money" is featurized into [0, 1, 1].

Q8.4 (2 points) We want to add a new feature word "Ring" to the classifier. Select all information about the training dataset needed to compute $P(\text{Ring} = 1 \mid \text{class} = \text{Spam})$.

The choices are not independent, e.g. selecting all choices means you need all 4 values. Assume you don't know the total number of Ham and Spam emails.

Number of "Spam" emails containing the word "Ring".

☐ Number of "Ham" emails containing the word "Ring".

Number of "Spam" emails **not** containing the word "Ring".

Number of "Ham" emails **not** containing the word "Ring".

O None of the above

The table below shows the results of running the classifier on a given test dataset:

Predicted Class	True Class	P(Predicted Class True Class)
Spam	Spam	0.6
Spam	Ham	0.2
Ham	Spam	0.4
Ham	Ham	0.8

	Паш	паш		0.8			
In the test dataset,	10% of the data p	points are "Sp	oam".				
Q8.5 (1 point) Wh	at is the precisio	n of the class	ifier, treating "Sp	oam" as the positive	e class?		
Hint from lec	ture slides: Precis		5				
\bigcirc 0.2	\bigcirc 0.25	\bigcirc 0.4	0.6	\bigcirc 0.75	O 0.8		
Q8.6 (1 point) What is the recall of the classifier, treating "Spam" as the positive class?							
Hint from lecture slides: Recall $= \frac{ ext{TP}}{ ext{TP} + ext{FN}}$							
\bigcirc 0.2	\bigcirc 0.25	\bigcirc 0.4	\bigcirc 0.6	\bigcirc 0.75	0.8		
The next two subp	oarts are from the	Transformer	s lecture.				
Q8.7 (1 point) True or False: In multi-head attention, each attention head can specialize on extracting different information from the input sequence.							
O True			O Fals	se			
Q8.8 (1 point) True or False: Beam search decoding allows LLMs to investigate multiple potential sequences in parallel and select the best one based on a heuristic.							
O True			○ Fals	se			
The next two subparts are from the guest lectures.							
Q8.9 (1 point) Which of these are areas where we see bias in AI? Select all that apply.							
Racial		☐ Lan	guage	O None	e of the above		
Q8.10 (1 point) Wh	ich of the followir	ng is not a fe	ature of a good n	nodel editing techn	ique?		
O Reliabil	lity	Incoherence	O Ger	neralization	O Locality		

Q9.1 (1 point) For unit vectors

$$a = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix},$$

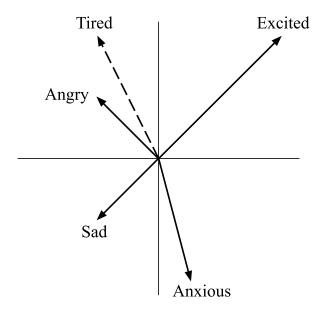
what does the dot product $a \cdot b$ represent?

- \bigcirc The difference in magnitude between a and b.
- \bigcirc The similarity between a and b.
- \bigcirc The sum of a and b.

Q9.2 (2 points) Which of the following is true about Softmax (shown below)?

Note: $\exp(z) = e^z$.

$$\operatorname{Softmax} \left(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \right) = \begin{bmatrix} \frac{\exp(x_1)}{\sum_{i=1}^n \exp(x_i)} \\ \vdots \\ \frac{\exp(x_n)}{\sum_{i=1}^n \exp(x_i)} \end{bmatrix}$$


- ☐ The values in the output of Softmax form a valid probability distribution.
- \square If $x_i < x_j$, then after applying Softmax, the *i*th element is less than the *j*th element.
- $\hfill \square$ Softmax linearly scales all inputs to between 0 and 1.
- ☐ Softmax can be used to introduce a non-linearity in a neural network.
- O None of the above

This question continues on the next page.

(Question 9 continued...)

Blinky has a word bank containing {"Angry", "Anxious", "Excited", "Sad"}. He uses a feature extraction function f to convert the words into feature vectors, shown below.

Blinky builds a model that takes in a new word "Tired", featurizes it into f(Tired), and wants to find the most similar word in the word bank.

Words in the bank:

$$f(\text{Angry}) = \begin{bmatrix} -1\\1 \end{bmatrix}$$

$$f(\text{Anxious}) = \begin{bmatrix} 0.5\\-2 \end{bmatrix}$$

$$f(\text{Excited}) = \begin{bmatrix} 2\\2 \end{bmatrix}$$

$$f(\text{Sad}) = \begin{bmatrix} -1\\-1 \end{bmatrix}$$

Blinky's new word:

$$f(\mathrm{Tired}) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Q9.3 (2 points) Blinky's model uses the following equation, where w is a word in the word bank.

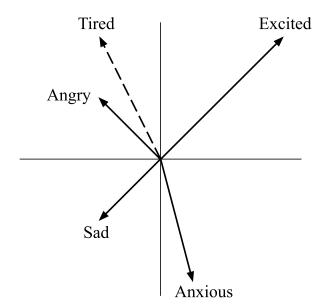
$$\begin{aligned} \text{SimilarityScore}(\text{Tired}, w) &= \frac{\exp(f(\text{Tired}) \cdot f(w))}{\sum\limits_{w' \in \text{ bank}} \exp(f(\text{Tired}) \cdot f(w'))} \end{aligned}$$

Which w has the highest SimilarityScore with "Tired"?

- O Angry
- Anxious
- O Excited
- O Sad

Q9.4 (2 points) For this subpart only, Xavier creates a XavierSimilarityScore model

$$\text{XavierSimilarityScore}(\text{Tired}, w) = \frac{\exp(A \, f(\text{Tired}) \cdot f(w))}{\sum\limits_{w' \in \text{ bank}} \exp(A \, f(\text{Tired}) \cdot f(w'))}$$


where A is a 2×2 matrix that transforms Tired's feature vector from f(Tired) to A f(Tired).

What choice of A causes "Anxious" to have the highest XavierSimilarityScore to "Tired"?

- $\bigcap \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which leaves f(Tired) unchanged.
- \bigcirc $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, which rotates $f(\operatorname{Tired})$ 90 degrees clockwise.
- $\bigcap \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, which rotates f(Tired) 180 degrees.
- $\bigcap \left(egin{smallmatrix} 2 & 0 \\ 0 & 2 \end{smallmatrix} \right)$, which scales $f(\mathrm{Tired})$ by 2.

(Question 9 continued...)

The diagram is reprinted for your convenience.

Words in the bank:

$$f(\text{Angry}) = \begin{bmatrix} -1\\1 \end{bmatrix}$$

$$f(\text{Anxious}) = \begin{bmatrix} 0.5\\-2 \end{bmatrix}$$

$$f(\text{Excited}) = \begin{bmatrix} 2\\2 \end{bmatrix}$$

$$f(\text{Sad}) = \begin{bmatrix} -1\\-1 \end{bmatrix}$$

Blinky's new word:

$$f(\mathrm{Tired}) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Q9.5 (2 points) For this subpart only, Noah creates a NoahSimilarityScore model:

$$\begin{aligned} \text{NoahSimilarityScore}(\text{Tired}, w) &= \frac{\exp(f(\text{Tired}) \cdot B \: f(w))}{\sum\limits_{w' \in \text{ bank}} \exp(f(\text{Tired}) \cdot B \: f(w'))} \end{aligned}$$

where B is a 2×2 matrix that transforms each bank word's feature vector from f(w) to B f(w).

What choice of *B* causes "Sad" to have the highest NoahSimilarityScore to "Tired"?

- $\bigcap \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which leaves f(w) unchanged.
- $\bigcap \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, which rotates f(w) 90 degrees clockwise.
- $\bigcap ig(egin{smallmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, which rotates f(w) 180 degrees.
- $\bigcap \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, which scales f(w) by 2.

Q9.6 (1 point) For this subpart only, consider an AttentionScore model:

$$\text{AttentionScore}(\text{Tired}, w) = \frac{\exp(f(\text{Tired}) \cdot f(w))}{\sum\limits_{w' \in \text{ bank}} \exp(f(\text{Tired}) \cdot f(w'))} \; C \; f(w)$$

where C is a 1×2 matrix.

True or False: There exists a choice of C such that "Anxious" has the highest AttentionScore with "Tired" out of all the words in the word bank.

O True

O False