
Announcements

▪ Project 0 (optional) is due Friday, January 24, 11:59 PM PT 

▪ HW0 (optional) is due Wednesday, January 29, 11:59 PM PT 

▪ Project 1 is due Friday, February 7, 11:59 PM PT 

▪ HW1 is due Wednesday, February 5, 11:59 PM PT
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University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]



Today

▪ Agents that Plan Ahead 

▪ Search Problems 

▪ Uninformed Search Methods 

▪ Depth-First Search 

▪ Breadth-First Search 

▪ Uniform-Cost Search



Agents that Plan



Reflex Agents

▪ Reflex agents: 
▪ Choose action based on current percept (and 

maybe memory) 
▪ May have memory or a model of the world’s 

current state 
▪ Do not consider the future consequences of 

their actions 
▪ Consider how the world IS 

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]



Video of Demo Reflex Optimal



Video of Demo Reflex Odd 



Planning Agents

▪ Planning agents: 
▪ Ask “what if” 
▪ Decisions based on (hypothesized) consequences 

of actions 
▪ Must have a model of how the world evolves in 

response to actions 
▪ Must formulate a goal (test) 
▪ Consider how the world WOULD BE 

▪ Optimal vs. complete planning 

▪ Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]



Video of Demo Mastermind



Video of Demo Replanning



Search Problems



Search Problems

▪ A search problem consists of: 

▪ A state space 

▪ A successor function 
 (with actions, costs) 

▪ A start state and a goal test 

▪ A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



Search Problems Are Models



Example: Traveling in Romania

▪ State space: 
▪ Cities 

▪ Successor function: 
▪ Roads: Go to adjacent city with 

cost = distance 
▪ Start state: 

▪ Arad 
▪ Goal test: 

▪ Is state == Bucharest? 

▪ Solution?



What’s in a State Space?

▪ Problem: Pathing 
▪ States: (x,y) location 
▪ Actions: NSEW 
▪ Successor: update location 

only 
▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots 
▪ States: {(x,y), dot booleans} 
▪ Actions: NSEW 
▪ Successor: update location 

and possibly a dot boolean 
▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)



State Space Sizes?

▪ World state: 
▪ Agent positions: 120 
▪ Food count: 30 
▪ Ghost positions: 12 
▪ Agent facing: NSEW 

▪ How many 
▪ World states? 
 120x(230)x(122)x4 
▪ States for pathing? 
 120 
▪ States for eat-all-dots? 
 120x(230)



Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared 

▪ What does the state space have to specify? 
▪ (agent position, dot booleans, power pellet booleans, remaining scared time)



State Space Graphs and Search Trees



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem 
▪ Nodes are (abstracted) world configurations 
▪ Arcs represent successors (action results) 
▪ The goal test is a set of goal nodes (maybe only one) 

▪ In a state space graph, each state occurs only 
once! 

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem 
▪ Nodes are (abstracted) world configurations 
▪ Arcs represent successors (action results) 
▪ The goal test is a set of goal nodes (maybe only one) 

▪ In a state space graph, each state occurs only 
once! 

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny 
search problem



Search Trees

▪ A search tree: 
▪ A “what if” tree of plans and their outcomes 
▪ The start state is the root node 
▪ Children correspond to successors 
▪ Nodes show states, but correspond to PLANS that achieve those states 
▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



State Space Graphs vs. Search Trees
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on demand – and 
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little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph



Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: 

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?
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Tree Search



Search Example: Romania



Searching with a Search Tree

▪ Search: 
▪ Expand out potential plans (tree nodes) 
▪ Maintain a fringe of partial plans under consideration 
▪ Try to expand as few tree nodes as possible



General Tree Search

▪ Important ideas: 
▪ Fringe 
▪ Expansion 
▪ Exploration strategy 

▪ Main question: which fringe nodes to explore?



Example: Tree Search
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Example: Tree Search
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Depth-First Search



Depth-First Search
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Strategy: expand a 
deepest node first 

Implementation: 
Fringe is a LIFO stack



Search Algorithm Properties



Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists? 

▪ Optimal: Guaranteed to find the least cost path? 

▪ Time complexity? 

▪ Space complexity? 

▪ Cartoon of search tree: 
▪ b is the branching factor 
▪ m is the maximum depth 
▪ solutions at various depths 

▪ Number of nodes in entire tree? 
▪ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers



Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand? 
▪ Some left prefix of the tree. 
▪ Could process the whole tree! 
▪ If m is finite, takes time O(bm) 

▪ How much space does the fringe take? 
▪ Only has siblings on path to root, so O(bm) 

▪ Is it complete? 
▪ m could be infinite, so only if we prevent that 

▪ Is it optimal? 
▪ No, it finds the “leftmost” solution, regardless 

of depth or cost



Breadth-First Search



Breadth-First Search
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Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand? 
▪ Processes all nodes above shallowest solution 
▪ Let depth of shallowest solution be s 
▪ Search takes time O(bs) 

▪ How much space does the fringe take? 
▪ Has roughly the last tier, so O(bs) 

▪ Is it complete? 
▪ s must be finite if a solution exists, so yes! 

▪ Is it optimal? 
▪ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Quiz: DFS vs BFS



Video of Demo Maze Water DFS/BFS (part 1)



Video of Demo Maze Water DFS/BFS (part 2)



Quiz: DFS vs BFS

▪ When will BFS outperform DFS? 

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]



Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s time / 
shallow-solution advantages 
▪ Run a DFS with depth limit 1.  If no solution… 
▪ Run a DFS with depth limit 2.  If no solution… 
▪ Run a DFS with depth limit 3.  ….. 

▪ Isn’t that wastefully redundant? 
▪ Generally most work happens in the lowest level 

searched, so not so bad! 
▪ Branching factor 10, solution 5 deep: 

▪ BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110 
▪ IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. 
It does not find the least-cost path.  We will now cover 
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand? 
▪ Processes all nodes with cost less than cheapest solution! 
▪ If that solution costs C* and arcs cost at least ε , then the “effective depth” 

is roughly C*/ε 

▪ Takes time O(bC*/ε) (exponential in effective depth) 

▪ How much space does the fringe take? 
▪ Has roughly the last tier, so O(bC*/ε) 

▪ Is it complete? 
▪ Assuming best solution has a finite cost and minimum arc cost is positive, 

yes! 

▪ Is it optimal? 
▪ Yes!  (Proof next lecture via A*)

b

C*/ε  “tiers”
c ≤ 3

c ≤ 2
c ≤ 1



Uniform Cost Issues

▪ Remember: UCS explores increasing cost 
contours 

▪ The good: UCS is complete and optimal! 

▪ The bad: 
▪ Explores options in every “direction” 
▪ No information about goal location 

▪ We’ll fix that soon!

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)] 
[Demo: maze with deep/shallow 
water DFS/BFS/UCS (L2D7)]



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)



The One Queue

▪ All these search algorithms are the 
same except for fringe strategies 
▪ Conceptually, all fringes are priority 

queues (i.e. collections of nodes with 
attached priorities) 

▪ Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues 

▪ Can even code one implementation that 
takes a variable queuing object



Search and Models

▪ Search operates over 
models of the world 
▪ The agent doesn’t actually 

try all the plans out in the 
real world! 

▪ Planning is all “in 
simulation” 

▪ Your search is only as good 
as your models…



Search Gone Wrong?


