
Announcements

▪ Project 0 (optional) is due Friday, January 24, 11:59 PM PT

▪ HW0 (optional) is due Wednesday, January 29, 11:59 PM PT

▪ Project 1 is due Friday, February 7, 11:59 PM PT

▪ HW1 is due Wednesday, February 5, 11:59 PM PT

CS 188: Artificial Intelligence

Search

Spring 2025

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

Agents that Plan

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and

maybe memory)
▪ May have memory or a model of the world’s

current state
▪ Do not consider the future consequences of

their actions
▪ Consider how the world IS

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

▪ Planning agents:
▪ Ask “what if”
▪ Decisions based on (hypothesized) consequences

of actions
▪ Must have a model of how the world evolves in

response to actions
▪ Must formulate a goal (test)
▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Mastermind

Video of Demo Replanning

Search Problems

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance
▪ Start state:

▪ Arad
▪ Goal test:

▪ Is state == Bucharest?

▪ Solution?

What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location
▪ Actions: NSEW
▪ Successor: update location

only
▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}
▪ Actions: NSEW
▪ Successor: update location

and possibly a dot boolean
▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW

▪ How many
▪ World states?
 120x(230)x(122)x4
▪ States for pathing?
 120
▪ States for eat-all-dots?
 120x(230)

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared

▪ What does the state space have to specify?
▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)
▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)
▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes
▪ The start state is the root node
▪ Children correspond to successors
▪ Nodes show states, but correspond to PLANS that achieve those states
▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)
▪ Maintain a fringe of partial plans under consideration
▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd e

r

S

d e p

e

h r

f

c G

b c

s
s d
s e
s p
s d b
s d c
s d e
s d e h
s d e r
s d e r f
s d e r f c
s d e r f G

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth
▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent that

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless

of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Quiz: DFS vs BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s time /
shallow-solution advantages
▪ Run a DFS with depth limit 1. If no solution…
▪ Run a DFS with depth limit 2. If no solution…
▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?
▪ Generally most work happens in the lowest level

searched, so not so bad!
▪ Branching factor 10, solution 5 deep:

▪ BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
▪ IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the “effective depth”

is roughly C*/ε

▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost is positive,

yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2
c ≤ 1

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

▪ All these search algorithms are the
same except for fringe strategies
▪ Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

▪ Can even code one implementation that
takes a variable queuing object

Search and Models

▪ Search operates over
models of the world
▪ The agent doesn’t actually

try all the plans out in the
real world!

▪ Planning is all “in
simulation”

▪ Your search is only as good
as your models…

Search Gone Wrong?

